首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Entanglement is the main resource in quantum communication. The main aims of the arbitrated quantum signature (AQS) scheme are to present an application of the entanglement in cryptology and to prove the possibility of the quantum signature. More specifically, the main function of quantum entangled states in the existing AQS schemes is to assist the signatory to transfer quantum states to the receiver. However, teleportation and the Leung quantum one-time pad (L-QOTP) algorithm are not enough to design a secure AQS scheme. For example, Pauli operations commute or anticommute with each other, which makes the implementation of attacks easily from the aspects of forgery and disavowal. To conquer this shortcoming, we construct an improved AQS scheme using a new QOTP algorithm. This scheme has three advantages: it randomly uses the Hadamard operation in the new QOTP to resist attacks by using the anticommutativity of nontrivial Pauli operators and it preserves almost all merits in the existing AQS schemes; even in the process of handling disputes, no party has chance to change the message and its signature without being discovered; the receiver can verify the integrity of the signature and discover the disavow of the signatory even in the last step of verification.  相似文献   

2.
Several quantum signature schemes are recently proposed to realize secure signatures of quantum or classical messages. Arbitrated quantum signature as one nontrivial scheme has attracted great interests because of its usefulness and efficiency. Unfortunately, previous schemes cannot against Trojan horse attack and Do S attack and lack of the unforgeability and the non-repudiation. In this paper, we propose an improved arbitrated quantum signature to address these secure issues with the honesty arbitrator. Our scheme takes use of qubit states not entanglements. More importantly, the qubit scheme can achieve the unforgeability and the non-repudiation. Our scheme is also secure for other known quantum attacks.  相似文献   

3.
An arbitrated quantum signature scheme without using entangled states is proposed.In the scheme,by employing a classical hash function and random numbers,the secret keys of signer and receiver can be reused.It is shown that the proposed scheme is secure against several well-known attacks.Specifically,it can stand against the receiver’s disavowal attack.Moreover,compared with previous relevant arbitrated quantum signature schemes,the scheme proposed has the advantage of less transmission complexity.  相似文献   

4.
Motivated by the hyperentangled Bell states analysis, an arbitrated quantum proxy blind signature (QPBS) scheme is developed. Four participants accomplish the task of signing and verifying via exchanging the entanglement of polarization and spatial-mode degrees of freedom. Alice blinds message and sends it to a proxy signatory David who is delegated by the original signatory Charlie. David generates a signature using the delegating code while Bob verifies the signing with the help of an arbitrator Trent. Unlike previous schemes, the verifying phase is no longer executed only by a recipient. Analysis shows that when the even numbers of blinding string always equal 1, the scheme protects the proxy blind signature against forgery and disavow while maintaining the properties of verifiability and identifiability.  相似文献   

5.
An arbitrated quantum signature (AQS) scheme is demonstrated on a basis of an improved quantum chaotic encryption algorithm using the quantum one-time pad with a chaotic operation string. In this scheme, the signatory signs the message while the receiver verifies the signature’s validity with the aid of the trusty arbitrator who plays a crucial role when a possible dispute arises. Analysis shows that the signature can neither be forged nor disavowed by any malicious attackers.  相似文献   

6.
A batch quantum multi-proxy signature scheme is proposed, in which the original signatory distributes his signing right to multiple proxy signatories, and these proxy signatories can sign multiple messages. The proxy signatories generate some single particles, and the original signatory uses the quantum-controlled-not to transmit the signing information to these single particles. Then the proxy signatories measure these single particles to generate the signature, and the arbitrator uses the comparison of quantum states to verify the signature. Compared to the existing schemes, the main merit of our scheme is that multiple quantum messages can be signed. So the signing efficiency will be increased greatly.  相似文献   

7.
In this paper, we present a verifiable arbitrated quantum signature scheme based on controlled quantum teleportation. The five-qubit entangled state functions as a quantum channel. The proposed scheme uses mutually unbiased bases particles as decoy particles and performs unitary operations on these decoy particles, applying the functional values of symmetric bivariate polynomial. As such, eavesdropping detection and identity authentication can both be executed. The security analysis shows that our scheme can neither be disavowed by the signatory nor denied by the verifier, and it cannot be forged by any malicious attacker.  相似文献   

8.
Implementing an arbitrated quantum signature(QAS) through complex networks is an interesting cryptography technology in the literature. In this paper, we propose an arbitrated quantum signature for the multi-user-involved networks, whose topological structures are established by the encoded graph state. The determinative transmission of the shared keys, is enabled by the appropriate stabilizers performed on the graph state. The implementation of this scheme depends on the deterministic distribution of the multi-user-shared graph state on which the encoded message can be processed in signing and verifying phases. There are four parties involved, the signatory Alice, the verifier Bob, the arbitrator Trent and Dealer who assists the legal participants in the signature generation and verification. The security is guaranteed by the entanglement of the encoded graph state which is cooperatively prepared by legal participants in complex quantum networks.  相似文献   

9.
In an arbitrated signature scheme, all communications involve a so called arbitrator who has access to the contents of the messages. The security of most arbitrated signature schemes depends heavily on the trustworthiness of the arbitrators. In this paper we show how to construct an arbitrated quantum signature protocol of classical messages with an untrusted arbitrator. Its security is analyzed and it is proved to be secure even if the arbitrator is compromised. In addition, the proposed protocol does not require a direct quantum link between any two communicating users, which is an appealing advantage in the implementation of a practical quantum distributed communication network.  相似文献   

10.
In an arbitrated quantum signature scheme, the signer signs the message and the receiver verifies the signature’s validity with the assistance of the arbitrator. We present an arbitrated quantum blind signature scheme by measuring four-particle cluster states and coding. By using the special relationship of four-particle cluster states, we cannot only support the security of quantum signature, but also guarantee the anonymity of the message owner. It has a wide application to E-payment system, E-government, E-business, and etc.  相似文献   

11.
In an arbitrated quantum signature scheme, the signer signs the message and the receiver verifies the signature’s validity with the assistance of the arbitrator. We present an arbitrated quantum blind signature scheme by using four-particle entangled Greenberger-Horne-Zeilinger (GHZ) states. By using the special relationship of four-particle GHZ states, we cannot only support the security of quantum signature, but also guarantee the anonymity of the message owner. It has a wide application to E-payment system, E-government, E-business, and etc.  相似文献   

12.
<正>In this paper an arbitrated quantum signature scheme based on entanglement swapping is proposed.In this scheme a message to be signed is coded with unitary operators.Combining quantum measurement with quantum encryption, the signer can generate the signature for a given message.Combining the entangled states generated by the TTP’s Bell measurement with the signature information,the verifier can verify the authentication of a signature through a single quantum state measurement.Compared with previous schemes,our scheme is more efficient and less complex, furthermore,our scheme can ensure the anonymity of the signer.  相似文献   

13.
We propose an arbitrated quantum signature(AQS) scheme with continuous variable(CV) squeezed vacuum states,which requires three parties, i.e., the signer Alice, the verifier Bob and the arbitrator Charlie trusted by Alice and Bob, and three phases consisting of the initial phase, the signature phase and the verification phase. We evaluate and compare the original state and the teleported state by using the fidelity and the beam splitter(BS) strategy. The security is ensured by the CV-based quantum key distribution(CV-QKD) and quantum teleportation of squeezed states. Security analyses show that the generated signature can be neither disavowed by the signer and the receiver nor counterfeited by anyone with the shared keys. Furthermore, the scheme can also detect other manners of potential attack although they may be successful.Also, the integrality and authenticity of the transmitted messages can be guaranteed. Compared to the signature scheme of CV-based coherent states, our scheme has better encoding efficiency and performance. It is a potential high-speed quantum signature scheme with high repetition rate and detection efficiency which can be achieved by using the standard off-the-shelf components when compared to the discrete-variable(DV) quantum signature scheme.  相似文献   

14.
In 2014, Liu et al. (In. J. Thero. phys. 53(5); 1569–1579. 2014) proposed an arbitrated quantum signature scheme (Liu’14) with Bell states by utilizing a new quantum one-time pad algorithm. It claimed that it can resist the receiver’s existential forgery attack and no party has chances to change the message and its signature without being discovered. Recently, Xu and Zou (In. J. Thero. phys. 55; 4142-4156. 2016) analyzed above scheme and demonstrated that it can’t resist the signer’s disavowal and the receiver’s existential forgery. But, the authors didn’t give a method to solve it. In this paper, we will give an improved arbitrated quantum signature scheme to make up the loopholes in Liu’14.  相似文献   

15.
Recently, Chong et al. [Opt. Comm. 284, (2011) 893-895] pointed out that a dishonest party in Yang and Wen's arbitrated quantum signature scheme [Opt. Comm. 283, (2010) 3198-3201] is able to reveal the other party's secret key without being detected by using the Trojan-horse attacks. However, the solution to avoid the attack still remains open. This work further points out that in Yang and Wen's scheme, the arbitrator is unable to arbitrate the dispute between two users. Consequently, a user can deny that he/she has signed or verified a signature without performing a Trojan-horse attack. A solution is proposed to solve this problem as well as the open problem mentioned earlier.  相似文献   

16.
This study points out that a dishonest party in Yang and Wen's arbitrated quantum signature scheme [Opt. Comm. 283, (2010) 3198-3201] can reveal the other party's secret key without being detected by using the Trojan-horse attacks. Accordingly, the security requirements of a quantum signature, i.e. unforgeability and undeniability, may not be satisfied in their scheme.  相似文献   

17.
刘佳丽  施荣华  石金晶  吕格莉  郭迎 《中国物理 B》2016,25(8):80306-080306
A novel quantum dual signature scheme, which combines two signed messages expected to be sent to two diverse receivers Bob and Charlie, is designed by applying entanglement swapping with coherent states. The signatory Alice signs two different messages with unitary operations(corresponding to the secret keys) and applies entanglement swapping to generate a quantum dual signature. The dual signature is firstly sent to the verifier Bob who extracts and verifies the signature of one message and transmits the rest of the dual signature to the verifier Charlie who verifies the signature of the other message. The transmission of the dual signature is realized with quantum teleportation of coherent states. The analysis shows that the security of secret keys and the security criteria of the signature protocol can be greatly guaranteed.An extensional multi-party quantum dual signature scheme which considers the case with more than three participants is also proposed in this paper and this scheme can remain secure. The proposed schemes are completely suited for the quantum communication network including multiple participants and can be applied to the e-commerce system which requires a secure payment among the customer, business and bank.  相似文献   

18.
Quantum signature (QS) is used to authenticate the identity of the originator, ensure data integrity and provide non-repudiation service with unconditional security. Depending on whether a trusted third party named arbitrator is involved or not, QS is classified as arbitrated QS and true QS. This paper studies existence problem about the two kinds of QS and contributes to two points: (1) a basic framework is provided to analyze the possibility of arbitrated QS on signing quantum messages; (2) disagreement between the impossibility of true QS and an existing true QS scheme is solved.  相似文献   

19.

Digital signature plays an important role in cryptography. Many quantum digital signature (QDS) schemes have been proposed up to now since the security of classic digital signature (CDS) schemes becomes more and more vulnerable with the development of quantum computing algorithms. Most of the existing quantum signature schemes are based on probabilistic comparison of quantum states, which makes the schemes very complicated. In this paper, we propose a new QDS scheme based on local indistinguishability of orthogonal product states. In the scheme, the receiver cooperates with the arbitrator to verify the valid of the signature. The analysis of security and efficiency shows that our scheme is secure and efficient.

  相似文献   

20.
With the development of quantum signature, two improved arbitrated quantum signature(AQS) protocols have been presented with different quantum encryptions. In this paper, some security loopholes during the two AQS protocols are proposed. In the enhanced arbitrated quantum signature(EAQS) protocol, though the signer is not able to deny his signature, the receiver can still forge some valid signatures. In the chaos-based arbitrated quantum signature(CAQS) protocol, the receiver can forge a valid signature without being caught, and the signer can also deny her signature after the signing phase. Finally, some potential improved ideas are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号