首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
杨志强  刘世伟  孙毅 《中国物理 B》2016,25(9):90202-090202
This paper discusses a statistical second-order two-scale(SSOTS) analysis and computation for a heat conduction problem with a radiation boundary condition in random porous materials.Firstly,the microscopic configuration for the structure with random distribution is briefly characterized.Secondly,the SSOTS formulae for computing the heat transfer problem are derived successively by means of the construction way for each cell.Then,the statistical prediction algorithm based on the proposed two-scale model is described in detail.Finally,some numerical experiments are proposed,which show that the SSOTS method developed in this paper is effective for predicting the heat transfer performance of porous materials and demonstrating its significant applications in actual engineering computation.  相似文献   

2.
冯永平  崔俊芝  邓明香 《物理学报》2009,58(13):327-S337
复合材料的研究中经常遇到具有周期孔洞结构的材料,由于区域的小周期性及剧烈振荡性,用传统的有限元计算方法来计算这些材料对应的问题时需要大量的计算机存储空间及计算时间.对这类材料的热力耦合问题给出了一种新型的高阶双尺度渐近解,得到了对应的均匀化常数、均匀化方程及对应的有限元算法.数值算例表明,周期单胞的局部结构对局部应力与应变有较大的影响.算法对数值模拟这类材料的力学行为是高效和可行的. 关键词: 双尺度方法 热力耦合 周期孔洞区域 有限元方法  相似文献   

3.
A meshless local Petrov-Galerkin (MLPG) approach is employed for solving the coupled radiative and conductive heat transfer in a one-dimensional slab with graded index media. The angular distribution term in discrete ordinate equation of radiative transfer within a one-dimensional graded index slab is discretized by a step scheme, and the meshless approach for radiative transfer is based on the discrete ordinate equation. A moving least-squares approximation is used to construct the shape function. Two particular test cases for coupled radiative and conductive heat transfer within a one-dimensional graded index slab are examined to verify this new approximate method. The temperatures and the radiative heat fluxes are obtained. The results are compared with the other benchmark approximate solutions. By comparison, the results show that the MLPG approach has a good accuracy in solving the coupled radiative and conductive heat transfer in one-dimensional graded index media.  相似文献   

4.
前沿领域综述–多孔介质强制对流换热研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
郑坤灿  温治  王占胜  楼国锋  刘训良  武文斐 《物理学报》2012,61(1):14401-014401
多孔介质的强制对流换热主要涉及渗流、对流换热、热弥散和热辐射等方面的内容, 文中对这个几个方面的国内外研究进展和发展趋势进行了逐一综述. 同时对主要理论模型、实验研究和经验关联式进行了分类整理, 总结了它们的特点、适用范围和局限性, 并对主要研究成果进行了对比分析, 指出了将来进一步研究的方向和难点所在. 而且通过简化计算得到高温多孔介质冷却过程何时需要考虑辐射换热. 所有这些对多孔介质的理论研究和工程应用都具有指导性的意义. 关键词: 多孔介质 对流换热 渗流 热弥散  相似文献   

5.
Considering the geometrical applicability, a finite element model (FEM) for coupled radiative-conductive heat transfer has been developed which is applicable to enclosures of arbitrary geometry in present research. The present work provides a solution of coupled heat transfer in a rectangular, cylindrical or annulus enclosure with black or gray walls containing an absorbing-emitting-scattering medium. It is also applied to study the influence of conductive/radiation coefficient, albedo and wall emissivity on the temperature distribution in the medium. Compared with the results available in other references, the present FEM has no limitation with respect to geometry and can predict the coupled radiative-conductive heat transfer in participating media accurately.  相似文献   

6.
Two-scale porous media are generated by filtering a Gaussian random correlated field with a random correlated threshold field. The percolation threshold and the critical exponent ν are derived with the help of a finite-size scaling method. The percolation threshold for the three-dimensional media is a decreasing function of the variance and correlation length of the threshold field. A simplified model predicts these trends in 3d; moreover, it suggested some effects in 2d which were all numerically verified. Received 17 August 2000  相似文献   

7.
Many numerical models use periodic boundary conditions in solving the radiative transfer through heterogeneous media specified over a fixed domain. A reciprocity principle applicable to solutions from these models is derived for the common situation of a scattering and absorbing heterogeneous medium that is illuminated over the entire domain from a single direction. The derived reciprocity principle states that the domain-averaged bidirectional reflectance distribution function remains invariant when incoming and outgoing directions are interchanged, regardless of the heterogeneity of the medium and the size of the domain. This reciprocity principle provides a simple and useful benchmark test for radiative transfer models that use periodic boundary conditions.  相似文献   

8.
A new method for the solution of the radiative transfer equation in spherical media based on a modified discrete ordinates method is extended to study radiative, conductive and convective heat transfer in a semi-transparent scattering porous medium. The set of differential equations is solved using the fourth-order Runge-Kutta method. Various results are obtained for the case of combined radiative and conductive heat transfer, as well as for the interaction of those modes with convection. The effects of some radiative properties of the medium on the heat transfer rate are examined.  相似文献   

9.
The steady flow of an incompressible viscous fluid due to a rotating disk in a nanofluid is studied. The transformed boundary layer equations are solved numerically by a finite difference scheme, namely the Keller-box method. Numerical results for the flow and heat transfer characteristics are obtained for various values of the nanoparticle volume fraction parameter φ and suction/injection parameter h0. Two models for the effective thermal conductivity of the nanofluid, namely the Maxwell-Garnett model and the Patel model, are considered. It is found that for the Patel model, the heat transfer rate at the surface increases for both suction and injection, whereas different behaviors are observed for the Maxwell-Garnett model, i.e. increasing the values of φ leads to a decrease in the heat transfer rate at the surface for suction, but increases for injection. The results of this study can be used in the design of an effective cooling system for electronic components to help ensure effective and safe operational conditions.  相似文献   

10.
A detailed numerical modeling is performed to investigate coupled heat transfer of natural convection, radiation and conduction in high-temperature multilayer thermal insulation (MTI), which consists of high-porous, non-gray semitransparent fibrous materials and reflective foils. Radiation within fibers, radiation between fibers and the reflective foils, conduction within fibers and convection from the fibers to the surrounding fluid are considered. Macroscopic (porous media) modeling is used to determine velocity, pressure and temperatures fields for fibrous insulation with a random packing geometry under natural convection, whereas the radiative transfer equation (RTE) is used to solve the radiative heat flux for non-gray materials. Key features of the macroscopic model include two-dimensional effects, non-gray radiative exchange, and the relaxation of the local thermodynamic non-equilibrium (LTNE). This model was validated by comparison with experimental data and it was used to investigate natural convection of coupled heat transfer in multilayer insulation, numerical results showed that natural convection is more likely to occur when the heated/cooled rate is low, while natural convection can be ignored in simulating steady-state coupled heat transfer in MTI.  相似文献   

11.
何宗旭  严微微  张凯  杨向龙  魏义坤 《物理学报》2017,66(20):204402-204402
运用格子Boltzmann方法研究了底部局部加热多孔介质方腔的自然对流传热.方腔的上壁面为低温热源,下壁面为局部高温热源,左右壁面为绝热条件.重点分析了高温热源位置a及尺寸b对多孔介质方腔自然对流传热性能的影响,提出了平均Nusselt数Nu和位置a及尺寸b的拟合关系式.研究结果表明:高温热源位置及尺寸对多孔介质方腔内自然对流传热性质的影响很大,且存在最佳高温热源位置(a=4/16)和尺寸(b=0.75),以达到最强的对流换热强度(Nu_(max)≈10.35)和最大的对流换热量(Q_(max)≈5.69).  相似文献   

12.
Simplifications of the model for nongray radiative heat transfer analysis in participating media comprised of polydisperse water droplets are presented. Databases of the radiative properties for a water droplet over a wide range of wavelengths and diameters are constructed using rigorous Mie theory. The accuracy of the radiative properties obtained from the database interpolation is validated by comparing them with those obtained from the Mie calculations. The radiative properties of polydisperse water droplets are compared with those of monodisperse water droplets with equivalent mean diameters. Nongray radiative heat transfer in the anisotropic scattering fog layer, including direct and diffuse solar irradiations and infrared sky flux, is analyzed using REM2. The radiative heat fluxes within the fog layer containing polydisperse water droplets are compared with those in the layer containing monodisperse water droplets. Through numerical simulation of the radiative heat transfer, polydisperse water droplets can be approximated by using the Sauter diameter, a technique that can be useful in several research fields, such as engineering and atmospheric science. Although this approximation is valid in the case of pure radiative transfer problems, the Sauter diameter is reconfirmed to be the appropriate diameter for approximating problems in radiative heat transfer, although volume-length mean diameter shows better accordance in some cases. The CPU time for nongray radiative heat transfer analysis with a fog model is evaluated. It is proved that the CPU time is decreased by using the databases and the approximation method for polydisperse particulate media.  相似文献   

13.
叶超  宁兆元 《物理》2006,35(04):322-329
65 nm以下线宽的纳电子器件,要求采用介电常数k小于2的超低介电常数材料作为层间和线间绝缘介质,等离子体增强的化学气相沉积技术制备的硅基纳米多孔薄膜,提供了实现k<2的可能性,多孔SiCOH薄膜成为最具希望的候选材料,但是,纳米孔的引入带来了材料其他性能恶化、集成工艺困难、薄膜微结构分析等许多新问题.文章介绍了多孔SiCOH(超)低k薄膜研究的主要进展及面临的挑战.  相似文献   

14.
叶超  宁兆元 《物理》2006,35(4):322-329
65nm以下线宽的纳电子器件,要求采用介电常数k小于2的超低介电常数材料作为层间和线间绝缘介质,等离子体增强的化学气相沉积技术制备的硅基纳米多孔薄膜,提供了实现k〈2的可能性,多孔SiCOH薄膜成为最具希望的候选材料,但是,纳米孔的引入带来了材料其他性能恶化、集成工艺困难、薄膜微结构分析等许多新问题.文章介绍了多孔SiCOH(超)低k薄膜研究的主要进展及面临的挑战.  相似文献   

15.
为了探究典型粗糙面上随机粒子层中能量传输的多次散射机制,提出了一种基于矢量辐射传输方程的建模二阶计算方法.该建模方法将建模场景(粗糙面上粒子层)在高度维(Z轴)划分为多个传输散射层,基于矢量辐射传输理论中的一阶迭代散射解,利用典型粗糙面的半经验半解析方法,求解出整个场景的二阶迭代散射解.同时,研究粒子层能量在粒子与粒子间的多次散射机制,以及粒子与地表粗糙面间的多次散射机制.数值结果表明,该二阶迭代解法相较于矢量辐射传输方程的一阶迭代散射解,能够更完整地探究互作用的散射特性,且可从能量传输角度解译建模场景中物体间的相干作用,从而可用于植被地物环境下的多次散射机制的解析以及散射系数变化趋势的预估.  相似文献   

16.
To take the local thermal nonequilibrium between particles and the nonuniformity of temperature within a single particle into account, a concept of multi-scale modeling of radiative transfer is presented. Particles are considered to interact with thermal radiation on both micro-scale of a single particle and meso-scale of a particle cell to produce radiative source term at the local or meso-scale level of a particle cell for the modeling of radiative transfer at macro-scale of overall particle system. The accurate modeling of radiative transfer in particle polydispersions are related to the modeling of radiative transfer in following three different scales: macro-scale of the overall particle system, meso-scale of particle cell, and micro-scale of single particle. Two examples are taken to show the necessity of multi-scale modeling for radiative transfer in particle polydispersions. The results show that omitting local thermal nonequilibrium and nonuniformity will result in errors for the solution of radiative heat transfer to some extent, and the multi-scale modeling is necessary for the radiative transfer in particle system with large local thermal nonequilibrium and nonuniformity.  相似文献   

17.
The present note deals with the effects of radiative heat transfer and free convection in MHD for a flow of an electrically conducting, incompressible, dusty viscous fluid past an impulsively started vertical non-conducting plate, under the influence of transversely applied magnetic field. The heat due to viscous dissipation and induced magnetic field is assumed to be negligible. The governing linear partial differential equations are solved by finite difference technique. The effects of various parameters (like radiation parameter N, Prandtl number Pr, porosity parameter K) entering into the MHD Stokes problem for flow of dusty conducting fluid have been examined on the temperature field and velocity profile for both the dusty fluid and dust particles.  相似文献   

18.
A least-squares collocation meshless method is employed for solving the radiative heat transfer in absorbing, emitting and scattering media. The least-squares collocation meshless method for radiative transfer is based on the discrete ordinates equation. A moving least-squares approximation is applied to construct the trial functions. Except for the collocation points which are used to construct the trial functions, a number of auxiliary points are also adopted to form the total residuals of the problem. The least-squares technique is used to obtain the solution of the problem by minimizing the summation of residuals of all collocation and auxiliary points. Three numerical examples are studied to illustrate the performance of this new solution method. The numerical results are compared with the other benchmark approximate solutions. By comparison, the results show that the least-squares collocation meshless method is efficient, accurate and stable, and can be used for solving the radiative heat transfer in absorbing, emitting and scattering media.  相似文献   

19.
We formulate the adjoint radiative transfer for a pseudo-spherical atmosphere and various retrieval scenarios. The single scattering radiance is computed in a spherical atmosphere by using the source integration technique, while for the multiple scattering radiance we formulate an one-dimensional adjoint radiative transfer equation in a plane-parallel atmosphere. The adjoint solution of the radiative transfer equation is obtained by employing the discrete ordinate method with matrix exponential. We provide an abbreviated derivation of our formalism as well as a discussion of the numerical implementation of the theory.  相似文献   

20.
A discontinuous spectral element method (DSEM) is presented to solve radiative heat transfer in multidimensional semitransparent media. This method is based on the general discontinuous Galerkin formulation. Chebyshev polynomial is used to build basis function on each element and both structured and unstructured elements are considered. The DSEM has properties such as hp-convergence, local conservation and its solutions are allowed to be discontinuous across interelement boundaries. The influences of different schemes for treatment of the interelement numerical flux on the performance of the DSEM are compared. The p-convergence characteristics of the DSEM are studied. Four various test problems are taken as examples to verify the performance of the DSEM, especially the performance to solve the problems with discontinuity in the angular distribution of radiative intensity. The predicted results by the DSEM agree well with the benchmark solutions. Numerical results show that the p-convergence rate of the DSEM follows exponential law, and the DSEM is stable, accurate and effective to solve multidimensional radiative transfer in semitransparent media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号