首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the influence of Sb-doping on the martensitic transformation and magnetocaloric effect in Mn_(50)Ni_(40)Sn_(10-x)Sb_x(x = 1, 2, 3, and 4) alloys. All the prepared samples exhibit a B2-type structure with the space group F m3 m at room temperature. The substitution of Sb increases the valence electron concentration and decreases the unit cell volume. As a result, the magnetostructural transformation shifts rapidly towards higher temperatures as x increases.The changes in magnetic entropy under different magnetic field variations are explored around this transformation. The isothermal magnetization curves exhibit typical metamagnetic behavior, indicating that the magnetostructural transformation can be induced by a magnetic field. The tunable martensitic transformation and magnetic entropy changes suggest that Mn_(50)Ni_(40)Sn_(10-x)Sb_x alloys are attractive candidates for applications in solid-state refrigeration.  相似文献   

2.
胡凤霞  沈保根  孙继荣 《中国物理 B》2013,22(3):37505-037505
Our recent progress on magnetic entropy change (ΔS) involving martensitic transition in both conventional and metamagnetic NiMn-based Heusler alloys is reviewed. For the conventional alloys, where both martensite and austenite exhibit ferromagnetic (FM) behavior but show differentmagnetic anisotropies, a positive ΔS as large as 4.1 J·kg-1·K-1 under a field change of 0–0.9 T was first observed at martensitic transition temperature TM ~ 197 K. Through adjusting the Ni:Mn:Ga ratio to affect valence electron concentration e/a, TM was successfully tuned to room temperature, and a large negative ΔS was observed in a single crystal. The -ΔS attained 18.0 J·kg-1·K-1 under a field change of 0–5 T. We also focused on the metamagnetic alloys that show mechanisms different from the conventional ones. It was found that post-annealing in suitable conditions or introducing interstitial H atoms can shift the TM across a wide temperature range while retaining the strong metamagnetic behavior, and hence, retaining large magnetocaloric effect (MCE) and magnetoresistance (MR). The melt-spun technique can disorder atoms and make the ribbons display a B2 structure, but the metamagnetic behavior, as well as the MCE, becomes weak due to the enhanced saturated magnetization of martensites. We also studied the effect of Fe/Co co-doping in Ni45(Co1-xFex)5Mn36.6In13.4 metamagnetic alloys. Introduction of Fe atoms can assist the conversion of the Mn–Mn coupling from antiferromagnetic to ferromagnetic, thus maintaining the strong metamagnetic behavior and large MCE and MR. Furthermore, a small thermal hysteresis but significant magnetic hysteresis was observed around TM in Ni51Mn49-xInx metamagnetic systems, which must be related to different nucleation mechanisms of structural transition under different external perturbations.  相似文献   

3.
The structures, the martensitic transformations, and the magnetic properties are studied systematically in Mn50Ni40-xCuxIn10, Mn50-xCuxNi40In10, and Mn50Ni40In10-xCux alloys. The partial substitution of Ni by Cu reduces the martensitic transformation temperature, but has little influence on the Curie temperature of austenite. Comparatively, the martensitic transformation temperature increases and the Curie temperature of austenite decreases with the partial replacement of Mn or In by Cu. The magnetization difference between the austenite phase and the martensite phase reaches 70 emu/g in Mn50Ni39Cu1In10; a field-induced martensite-to-austenite transition is observed in this alloy.  相似文献   

4.
刘俊  龚元元  徐桂舟  徐锋 《中国物理 B》2017,26(9):97501-097501
An investigation on the magnetostructural transformation and magnetocaloric properties of Ni_(48-x)Co_2Mn_(38+x)Sn_(12)(x = 0, 1.0, 1.5, 2.0, and 2.5) ferromagnetic shape memory alloys is carried out. With the partial replacement of Ni by Mn in the Ni_(48)Co_2Mn_(38)Sn_(12) alloy, the electron concentration decreases. As a result, the martensitic transformation temperature is decreased into the temperature window between the Curie-temperatures of austenite and martensite. Thus, the samples with x = 1.5 and 2.0 exhibit the magnetostructural transformation between the weak-magnetization martensite and ferromagnetic austenite at room temperature. The structural transformation can be induced not only by the temperature,but also by the magnetic field. Accompanied by the magnetic-field-induced magnetostructural transformation, a considerable magnetocaloric effect is observed. With the increase of x, the maximum entropy change decreases, but the effective magnetic cooling capacity increases.  相似文献   

5.
Magnetic properties and magnetic entropy change in La(Fe_{1-x}Mn_x)_{11.7}Si_{1.3}H_y compounds have been investigated. A significant increase of the Curie temperature T_C and a small increase of the saturation magnetizations μ_S have been observed after the introduction of interstitial H, which caused a slight volume expansion. The first-order field-induced itinerant-electron metamagnetic (IEM) transition remains and brings about a large magnetic entropy change around room temperatures for the compounds. The maximal magnetic entropy change is about 23.4, 17.7 and 15.9J/kg·K under a magnetic field change from 0 to 5T for x=0.01, 0.02 and 0.03, respectively. Therefore, the compounds appear to be potential candidates for magnetic refrigerants around room temperatures.  相似文献   

6.
In this paper the effects of Fe-Fe bond length change on magnetic properties and magnetic entropy change have been investigated on LaFe_{12.4-x}Si_xCo_{0.6} and LaFe_{12.3-x}Al_xCo_{0.7} intermetallic compounds. According to the analyses of Fe-Fe bond length change, the variation of Curie temperature and the unusual magnetic phase transition which results in the large magnetic entropy change were explained. The effects of the substitution of Co and Si for Fe on magnetic entropy change and field-induced itinerant-electron metamagnetic transition in LaFe_{12.4-x}Si_xCo_{0.6} compounds were also studied and the considerable magnetic entropy change has been achieved.  相似文献   

7.
通过结构以及磁性测量,研究了哈斯勒合金Ni50Mn25+xSn25-x (x=11,12)的马氏体相变和磁热性质.结果表明,与样品在奥氏体相的磁性不同,由于在马氏体相中反铁磁交换作用的增强,导致铁磁和反铁磁在马氏体状态下共存.此外,通过Maxwell方程,研究了两样品在不同磁场变化下马氏体相变温度附近的反磁热性质,并阐明了该系列合金产生大的正磁熵变(ΔSM)不仅与其在降温过程中发生马氏体相变所导致的磁跃变(ΔM)有关,而且与发生马氏体相变所经历的温度区间有密切的联系. 关键词: 哈斯勒合金 Ni-Mn-Sn 马氏体相变 正磁熵变  相似文献   

8.
张元磊  李哲  徐坤  敬超 《物理学报》2015,64(6):66402-066402
利用电弧炉制备了Ni50-xFexMn37In13(x=1, 3, 5) 多晶样品, 通过结构和磁性测量, 系统分析了Ni50-xFexMn37In13(x=1, 3, 5)样品的晶体结构和马氏体相变. 结果表明, 三样品在室温下呈现出了不同的晶体结构. 同时, 随着Fe含量的增加, 样品的马氏体相变温度急剧下降, 而铁磁性却逐渐增强. 研究了Fe3和Fe5样品在反马氏体相变过程中的磁电阻和磁卡效应. 在外加3 T的磁场下, 两样品在反马氏体相变区域所表现出的磁电阻效应分别约为-46%和-15%, 而等温熵变则约为6 J·kg-1·K-1和9.5 J·kg-1·K-1. 然而, 伴随非常宽的相变温跨和较小的磁滞损失, Fe3样品在反马氏体相变区域的净制冷量达到96 J·kg-1.  相似文献   

9.
The magnetic and magnetocaloric properties of(Tb1-xDyx) 6 Co 1.67 Si 3(0 ≤ x ≤ 0.8) have been experimentally investigated.The compounds exhibit a Ce6Ni2Si3-type hexagonal structure and undergo a second-order magnetic transition.The Curie temperature decreases from ~ 187 K to 142 K as the content of Dy grows from 0 to 0.8.The maximal magnetic entropy change,for a field change of 0-5 T,varies between ~ 6.2 and ~ 7.4 J/kg.K,slightly decreasing when Dy is introduced.The substitution of Dy leads to a remarkable increase in refrigeration capacity(RC).A large RC value of ~ 626 J/kg is achieved for x = 0.4 under a field change of 0-5 T.  相似文献   

10.
The unit cell volume and phase transition temperature of LaFe11.4Al1.6Cx compounds have been studied. The magnetic entropy change, refrigerant capacity and the type of magnetic phase transition are investigated in detail for LaFe11.4Al1.6Cx with x=0.1, All the LaFe11.4Al1.6Cx (x=0-0.8) compounds have the cubic NaZn13-type structure. The addition of carbon atoms brings about a considerable increase in the lattice parameter. The bulk expansion results in the change of phase transition temperature (Tc), Tc increases from 187K to 269 K with x varying from 0.1 to 0.8, Meanwhile an increase in the lattice parameter can also cause a change of the magnetic ground state from antiferromagnetic to ferromagnetic. Large magnetic entropy change IASI is found over a large temperature range around Tc and the refrigerant capacity is about 322J/kg for LaFe11.4Al1.6C0.1. The magnetic phase transition belongs in weakly first-order one for x=0.1.  相似文献   

11.
用Si元素替代CoNiGa合金中的Ga元素后,研究了材料的结构、马氏体相变及其磁性的变化.结果发现,当Si原子的含量在0—10%范围内,材料能够形成体心立方结构,并且具有很好的热弹性马氏体相变行为.进一步研究指出,简单的从掺杂元素的原子半径大小来判断其对奥氏体稳定性的影响是不够的,必须从考虑掺杂原子与基本元素原子半径之间的比例来考虑这一问题.同时还发现Curie温度和饱和磁化强度随着Si含量的上升而有所降低,但是其马氏体的各向异性随着Si含量的增加而增强,这一点对于在合金中获得大磁感生应变具有指导意义. 关键词: 铁磁形状记忆合金 马氏体相变 CoNiGaSi合金  相似文献   

12.
对具有两步完全热弹性的Ni53.2Mn22.6Ga24.2单晶的物性采用多种测量手段进行了表征,特别研究了不同温度下的应力-应变特性.研究表明,热诱发的中间马氏体相变应变远大于马氏体相变应变.在较低的形变温度下,沿单晶母相[001]方向的压应力诱发的是两步马氏体相变,材料表现出赝弹性;在较高的形变温度下,只能观察到一步马氏体相变,材料展现出完全超弹性特性.此外,利用热力学理论分别计算了诱发马氏体相变和中间马氏体相变的临界应力与形变温度的关系,与实验测量得到的结果相符. 关键词: 马氏体相变 形状记忆效应 应变 超弹性  相似文献   

13.
研究了MnNiGe1-xGax (x=0–0.30) 系列合金中成分、结构、马氏体相变性质和磁性的相互关系. 在较小的成分范围内, Ga取代Ge元素可有效地将马氏体相变温度降低近400 K. Ga的引入削弱了体系中的共价成键作用, 马氏体相显示出磁交换作用的增强. 相图显示, 掺杂使马氏体相变先后穿过TN 和TC 两个磁有序温度, 居里温度窗口效应在体系有存在的可能, 磁性对相变温度的成分关系有所影响. 实验观察到合金变磁转变的特性及相变行为对制备方法的敏感性. 这些特性的发现, 有利于进一步优化这类材料的磁结构和相变特性, 获得具有应用价值的新材料. 关键词: MM’X合金 马氏体相变 磁有序温度 变磁转变  相似文献   

14.
《Current Applied Physics》2018,18(12):1605-1608
Gd1-xHoxNi melt-spun ribbons were fabricated by a single-roller melt spinning method. All the compounds crystallize in an orthorhombic CrB-type structure. The Curie temperature (TC) was tuned between 46 and 99 K by varying the concentration of Gd and Ho. A spin reorientation (SRO) transition is observed around 13 K. Different from TC, the SRO transition temperature is almost invariable for all compounds. Two peaks of magnetic entropy change (ΔSM) were found. One at the higher temperature range was originated from the paramagnet-ferromagnet phase transition and the other at the lower temperature range was caused by the SRO transition. The maximum of ΔSM around TC is almost same. The other maximum of ΔSM around SRO transition, however, had significantly positive relationship with x. It reached a maximum about 8.2 J kg−1 K−1 for x = 0.8. Thus double large ΔSM peaks were obtained in Gd1-xHoxNi melt-spun ribbons with the high Ho concentration. And the refrigerant capacity power reached a maximum of 622 J kg−1 for x = 0.6. Gd1-xHoxNi ribbons could be good candidate for magnetic refrigerant working in the low temperature especially near the liquid nitrogen temperature range.  相似文献   

15.
研究了NaZn13型结构LaFe13-xAlxC0.1(x=1.6,1.8)间隙化合物的磁制冷能力和磁相变.利用麦克斯韦关系式计算得到,高Al含量LaFe13-xAlx碳化物的最大磁熵变值|ΔS|m低于低Al含量碳化物的最大磁熵变值.随Al含量的增加,化合物的磁熵变峰展宽,但由于磁熵变大幅降低,衡量磁制冷能力的q值随之降低.基于朗道相变原理,考虑到自旋涨落的影响,磁自由能可以展开到磁化强度的6次方项,材料的相变类型由磁化强度的4次方项系数a3(T)的符号来进行判断.随着Al含量的增加,研究的碳化物相变由弱的一级相变转为二级相变. 关键词: 13-xAlx碳化物')" href="#">LaFe13-xAlx碳化物 磁制冷能力 磁相变  相似文献   

16.
The LaFe11.5Si1.5H1.3 interstitial compound has been prepared. Its Curie temperature TC (288 K) has been adjusted to around room temperature, and the maximal magnetic entropy change (|ΔS|~17.0 J·kg-1·K-1 at TC) is larger than that of Gd (|ΔS|~9.8 J·kg-1·K-1 at TC=293 K) by ~73.5% under a magnetic change from 0 to 5 T. The origin of the large magnetic entropy change is attributed to the first-order field-induced itinerant-electron metamagnetic transition. Moreover, the magnetic hysteresis of LaFe11.5Si1.5H1.3 under the increase and decrease of the field is very small, which is favourable to magnetic refrigeration application. The present study suggests that the LaFe11.5Si1.5H1.3 compound is a promising candidate as a room-temperature magnetic refrigerant.  相似文献   

17.
Magnetic properties and magnetic entropy change ΔS were investigated in Heusler alloy Ni43Mn43Co3Sn11. With decreasing temperature this alloy undergoes a martensitic structural transition at TM=188 K. The incorporation of Co atoms enhances ferromagnetic exchange for parent phases. Austenitic phase with cubic structure shows strong ferromagnetic behaviors with Curie temperature TCA at 346 K, while martensitic phase shows weak ferromagnetic properties. An external magnetic field can shift TM to a lower temperature at a rate of 4.4 K/T, and a field-induced structural transition from martensitic to austenitic state takes place at temperatures near but below TM. As a result, a great magnetic entropy change with positive sign appears. The size of ΔS reaches 33 J/kg K under 5 T magnetic field. More important is that the ΔS displays a table-like peak under 5 T, which is favorable for Ericsson-type refrigerators.  相似文献   

18.
黄庆学  陈峰华  张敏刚  许小红 《中国物理 B》2016,25(5):57305-057305
Highly textured Heusler alloy Mn_(46)Ni_(42)Sn_(11)Sb_1 ribbons were prepared by melt spinning. The annealed high Mn content Mn46Ni42Sn11Sb1 ribbon cross-section microstructure, crystal structure, martensitic transformation(MT), and magnetoresistance(MR) properties were investigated. The MR in the annealed ribbon was assessed by the magnetic field direction perpendicular to the ribbon surface with the magnetic field up to 30 k Oe. The large negative value of 25% for MR was obtained at 244 K. The exchange bias(EB) effects of the as-spun and annealed ribbons were investigated. After annealing, the EB effects have been improved by about 25 Oe at the temperature of 50 K. The magnetizations have increased approximately by 10% more than the as-spun ribbon.  相似文献   

19.
The magnetic properties and magnetocaloric effect(MCE) in EuTi_(1-x)Co_xO_3(x = 0, 0.025, 0.05, 0.075, 0.1) compounds have been investigated. When the Ti~(4+) ions were substituted by Co2+ions, the delicate balance was changed between antiferromagnetic(AFM) and ferromagnetic(FM) phases in the EuTiO_3 compound. In EuTi_(1-x)Co_xO_3 system, a giant reversible MCE and large refrigerant capacity(RC) were observed without hysteresis. The values of -?S_M~(max) were evaluated to be around 10 J·kg~(-1)·K~(-1) for EuTi_(0.95)Co_(0.05)O_3 under a magnetic field change of 10 kOe. The giant reversible MCE and large RC suggests that EuTi_(1-x)Co_xO_3 series could be considered as good candidate materials for low-temperature and low-field magnetic refrigerant.  相似文献   

20.
基于伊辛模型的单自旋反转蒙特卡洛算法,考虑了粒子间的最近邻以及次近邻相互作用,研究了无序 合金的磁化强度和磁熵变。首先,强调了粒子间的次近邻相关作用对体系的磁性和热力学性质的影响,明确了次近邻相互作用系数,证实了低温合金阻挫的存在;其次,研究了在相变温度处(不同磁场下)磁化强度随外加磁场(温度)的变化情况以及磁性粒子对磁化强度的贡献,发现反铁磁性粒子Mn在低温区对 合金的相变起了主要作用,而高温区体系的相变是由铁磁性粒子Fe贡献的;最后,分析了体系在相变温度处磁熵变数值随外加磁场的变化情况以及磁熵变在不同的外磁场下随温度的变化情况,当外加磁场h=0.14时,Mn粒子在冻结温度处的平均磁化强度为零,体系处于最无序的状态,对应的磁熵变 达到了正向最大值,极值的位置对应于体系的相变温度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号