首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
李艳武  刘彭义  侯林涛  吴冰 《物理学报》2010,59(2):1248-1251
以Rubrene为电子传输层(ETL),制备了结构为ITO/MoO3(5nm)/Rubrene(50nm)/C60(45nm)/Rubrene(0,3,5.5,9.5nm)/Al(130nm)的有机太阳能电池.与没有ETL的器件相比,含5.5nmRubrene的电池的开路电压、填充因子、功率转换效率分别从0.68V,0.488,0.315%增加到0.86V,0.574,0.490%.实验结果分析表明:热的Al原子直接沉积在C60上,破坏了C60层,形成高功函数的C60/Al阴极,弱化内建电场,降低电池性能;当插入ETL后,C60层得到保护,热的Al原子沉积破坏了Rubrene层,形成了缺陷态能级,提高电池的内建电场,促进了电子的传输.进一步的单电子电池实验表明,缺陷态能级低于C60的最低未占据分子轨道.  相似文献   

2.
We observe that the reverse current under illumination in solar cells containing C60 and ZnPc is dominated by a photoshunt. This shunt, not present in the dark, causes a linear current–voltage relation under illumination showing no saturation. Although observable in bulk heterojunctions, this effect is more pronounced in the presence of a pristine C60 layer. An internal quantum efficiency larger than unity under an applied negative voltage and in the spectral range where C60 absorbs identifies charges which are injected in addition to those photogenerated. The photoshunt is also present in the power‐generating region and represents a loss mechanism limiting the fill factor in particular for flat heterojunction devices. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
给体-受体型有机太阳电池光敏层的优化设计   总被引:2,自引:0,他引:2       下载免费PDF全文
任驹  郑建邦  赵建林 《物理学报》2007,56(5):2868-2872
针对有机给体-受体型异质结薄膜太阳电池,基于薄膜中的光学干涉效应和激子扩散理论建立模型,定量分析了有机层厚度对太阳电池性能的影响,通过限制有机光敏层厚度来控制由光学干涉效应引起的局部光子密度(光强度)的分布,进而优化有机层的吸收效率和激子扩散效率,以此达到提高器件光伏效率的目的.并通过实验进行了验证. 关键词: 有机太阳电池 给体-受体 优化设计 激子  相似文献   

4.
有机共混结构叠层太阳电池的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
於黄忠 《物理学报》2013,62(2):27201-027201
有机太阳电池由于质轻、价廉、柔性,受到人们的广泛关注.单个有机材料只能吸收部分太阳光,叠层结构的太阳电池将不同吸收带隙的有机材料通过中间层连接起来,既能充分吸收太阳光,又能提高太阳电池的开路电压或短路电流.本文综述了近年来有机共混结构叠层太阳电池的研究进展,介绍了各种叠层有机太阳电池的结构、原理及性能,阐述了国内外有机叠层太阳电池研究的现状及存在问题,为高性能有机太阳电池的研究提供有价值的参考.  相似文献   

5.
黄林泉  周玲玉  于为  杨栋  张坚  李灿 《物理学报》2015,64(3):38103-038103
本文综述了石墨烯及其衍生物作为界面材料在有机太阳能电池中的应用, 包括作为阳极界面层、阴极界面层和叠层电池中间层等方面. 氧化石墨烯由于较好的透光性, 易于分散在水溶液中与溶液加工等优点已被应用在有机太阳能电池中. 对氧化石墨烯作为阳极界面层的研究包括通过部分还原或掺杂提高其导电性、通过引入高负电性原子提高其表面功函数, 以及通过与其他材料复合提高性能等. 同时, 本文综述了石墨烯衍生物及复合材料作为有机太阳能电池阴极界面层和叠层电池中间层的研究. 最后本文展望了石墨烯及其衍生物在有机太阳能电池与有机无机复合钙钛矿太阳能电池中的应用前景.  相似文献   

6.
We demonstrate that the optical absorption is enhanced in small molecule organic solar cells by using a trapezoid grating structure. The enhanced absorption is mainly attributed to both waveguide modes and surface plasmon modes, which is simulated by using finite-difference time-domain method. The simulated results show that the surface plasmon along the semitransparent metallic Ag anode is excited by introducing the periodical trapezoid gratings, which induce the increase of high intensity field in the donor layer. Meanwhile, the waveguide modes result in a high intensity field in acceptor layer. The increase of field improves the absorption of organic solar cells significantly, which is demonstrated by simulating the electrical properties. The simulated results also show that the short-circuit current is increased by 31% in an optimized device, which is supported by the experimental measurement. Experimental result shows that the power conversion efficiency of the grating sample is increased by 7.7%.  相似文献   

7.
This paper presents an overview of the recent progress of small molecule organic solar cells mainly based on the previous worksof our group. We will mainly focus on the interfacial processes in the cells. The dissociation of excitons at electrode/organic andorganic/organic interfaces can be directly observed by transient photovoltage measurements. A simple model including dissociationof excitons at the interface and drift of free carriers in the built-in field is proposed to explain the observed signals of ...  相似文献   

8.
PEDOT:PSS薄膜的山梨醇掺杂对光电池性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
李蛟  刘俊成  高从堦 《物理学报》2011,60(7):78803-078803
采用共混-旋涂技术在ITO导电玻璃上制备出经山梨醇掺杂的PEDOT:PSS导电膜,将所制得的薄膜作为空穴传输层用于有机太阳能电池研究.通过对比分析掺杂前后光电池暗电流曲线与光电流曲线的变化,考察了山梨醇掺杂对器件光伏性能的影响,并就其中的影响机理进行了讨论分析.结果表明,山梨醇的加入,可以明显提高光电池的短路电流,填充因子以及能量转换效率.较未掺杂器件,8wt %山梨醇掺杂条件下,器件短路电流由8.82 mA/cm2增加至11.27 mA/cm2,FF由0.43 关键词: PEDOT:PSS薄膜 山梨醇 有机太阳能电池 性能  相似文献   

9.
In this work, the properties of [1,2,5] thiadiazolo [3,4‐c] pyridine ‐alt‐cyclopenta [2,1‐b:3,4‐b′] dithiophene (PT‐CDT) and [1,2,5] thiadiazolo [3,4‐c] pyridine‐6‐carbonitrile‐alt‐cyclopenta [2,1‐b:3,4‐b′] dithiophene (PCNT‐CDT) as donors were investigated by means of Density Functional Theory. The electronic properties and optical absorption properties were discussed, and hole‐transfer properties of donors were studied by Marcus electron transfer theory. The results indicate that the linear structure of PCNT‐CDT and PT‐CDT is more stable than the spiral structure of PCNT‐CDT and PT‐CDT; the absorption peak in visible region of PCNT‐CDT is stronger and wider, and the absorption spectrum is more matchable to solar spectrum than PT‐CDT, while the maximum absorption wavelength of PCNT‐CDT has an obvious red shift; the two designed materials show strong intramolecular and intermolecular charge transfer properties; PCNT‐CDT owns a large open‐circuit voltage and low reorganization energy, as well as high hole mobility. Therefore, the newly designed PCNT‐CDT can be a potential donor material of organic solar cell. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Nanosilver island thin films with different thickness were synthesized by vacuum vapor deposition between ITO and PEDOT:PSS for organic solar cells, forming the structure of ITO/AgNPs layer/PEDOT:PSS/P3HT:PCBM/LiF/Al. Surface morphology and UV–vis absorption spectrum were investigated by AFM and UV–vis scanning spectrophotometer. It was found that after adding the nanosilver film, the optical properties of the device were enhanced with increasing the thickness of nanosilver island films. When the thickness of nanosilver thin films is 3.0 nm, the most significant surface plasmon response and red-shift of the resonance absorption peak appeared. Meanwhile, short circuit current density of the device increased from 9.93 mA/cm2 to 12.98 mA/cm2, the fill factor increased from 49.35% to 52.79% and the power conversion efficiency increased from 3.05% to 4.01%. These results provided a theoretical guidance to optimize the design and increase the performance of solar cells.  相似文献   

11.
A series of perylene-diimide-based small molecules have been designed to explore their optical, electronic and charge transport properties as organic solar cell materials. The frontier molecular orbitals analysis has turned out that the vertical electronic transitions of absorption are characterised as intramolecular charge transfer between perylene diimide moieties and substituent aromatic groups. Our results suggest that the optical and electronic properties and reorganisation energies are affected by the introduction of different aromatic groups to these molecules. The calculation results showed that the designed molecules own the large longest wavelength of absorption spectrum, the oscillator strength and absorption region values. On the basis of the investigated results, the designed molecules could be used as solar cell material with intense broad absorption spectra. Furthermore, they are expected to be the promising candidates for hole and/or electron transport materials.  相似文献   

12.
InGaN/GaN multiple quantum well (MQW) solar cells with stepped-thickness quantum wells (SQW) are designed and grown by metal-organic chemical vapor deposition. The stepped-thickness quantum wells structure, in which the well thickness becomes smaller and smaller along the growth direction, reveals better crystalline quality and better spectral overlap with the solar spectrum. Consequently, the short-circuit current density (Jsc) and conversion efficiency of the solar cell are enhanced by 27.12% and 56.41% compared with the conventional structure under illumination of AM1.5G (100 mW/cm2). In addition, approaches to further promote the performance of InGaN/GaN multiple quantum well solar cells are discussed and presented.  相似文献   

13.
Polymer, perovskite, and dye‐sensitized solar cells (DSSCs) are promising technologies for next generation low cost photovoltaic cells. Among these, perovskite solar cells are the newest technology and have the highest efficiency, while DSSCs are closest to commercialization with several companies producing the DSSC materials and modules and existing DSSC installations. However, all three types of solar cells share a concern about lifetime and stability. For each type of devices, there are specific concerns and degradation mechanisms, and all of the devices require encapsulation and exhibit varying degrees of sensitivity to moisture, oxygen, elevated temperature and UV illumination depending on the device structure and materials used. We are discussing the stability and lifetime for each type of cells and future outlook of these technologies. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

14.
杨学良  邓金祥 《物理》2012,41(10):669-674
能量转化效率低是有机太阳能电池实现商业化生产的一个瓶颈,因此,制备高性能太阳能电池的关键之一是提高能量转化效率(ηp),文章介绍了有机太阳能电池的工作原理,论述了目前有机太阳能电池的研究现状,重点从提高有机太阳能电池的开路电压(Voc)、短路电流(Isc)、光电转换效率(ηEOE)和填充因子(FF)等几方面分析总结了提高有机太阳能电池能量转化效率的几种有效途径,并简要阐述了有机太阳能电池稳定性的研究进展.  相似文献   

15.
Size, shape, and density‐controlled metal nanostructure, Au nanodot lattices fabricated by electron beam lithography, were embedded in thin organic solar cell consisting of PC71BM:PCPDTBT. The effects of their size and density on device performance were examined. Even though dipole res‐onances of Au nanodots were consistent with the absorption range of the active materials, there were no improvements in device performance under any sizes and densities. In addition, under high volume density of Au nanodots to PEDOT:PSS layer, the device performance was deteriorated. These results indicated that not only size and density but also other factors which determine light scattering characteristics greatly affect the device performance of solar cells. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

16.
In this work, we have presented a freestanding and flexible CNT-based film with sheet resistance of 60 ?/ and transmittance of 82% treated by nitric acid and chloroauric acid in sequence. Based on modified CNT film as a transparent electrode, we have demonstrated an ultrathin, flexible organic solar cell(OSC) fabricated on 2.5-μm PET substrate. The efficiency of OSC, combined with a composite film of poly(3-hexylthiophene)(P3HT) and phenyl-C61 butyric acid methyl ester(PCBM) as an active layer and with a thin layer of methanol soluble biuret inserted between the photoactive layer and the cathode, can be up to 2.74% which is approximate to that of the reference solar cell fabricated with ITO-coated glass(2.93%). Incorporating the as-fabricated ITO-free OSC with pre-stretched elastomer, 50% compressive deformation can apply to the solar cells. The results show that the as-prepared CNT-based hybrid film with outstanding electrical and optical properties could serve as a promising transparent electrode for low cost, flexible and stretchable OSCs, which will broaden the applications of OSC and generate more solar power than it now does.  相似文献   

17.
Bulk heterojunction organic solar cells(OSCs) based on the blend of poly(2-methoxy-5(2'-ethyl-hexyloxy)-1,4-phenylenevinylene(MEH-PPV) and [6,6]-phenyl C61 butyric acid methyl ester(PCBM) with different weight ratios(from 1:3 to 1:5) have been fabricated and the effect of annealing treatment on the performance of OSCs has also been studied.Experimental results point to the best optimized doping concentration 1:4 for MEH-PPV:PCBM.Furthermore,it is found that the devices with annealing treatment at 150℃ with ...  相似文献   

18.
Li-Jia Chen 《中国物理 B》2022,31(3):38802-038802
Tandem cell with structure of indium tin oxide (ITO)/molybdenum oxide (MoO3)/fullerene (C60)/copper phthalocyanine (CuPc)/C60/tris-8-hydroxy-quinolinato aluminum (Alq3)/Al was fabricated to study the effect of net carriers at the interconnection layer. The open circuit voltage and short circuit current were found to be 1.15 V and 0.56 mA/cm2, respectively. Almost the same performance (1.05 V, 0.58 mA/cm2  相似文献   

19.
Recent research status and future subjects for the development of thin-film crystalline Si solar cells were reviewed. Optimum design of cell configuration and polycrystalline silicon growth by atmospheric pressure chemical vapor deposition (APCVD) were demonstrated. In order to configure high efficiency thin-film poly-Si solar cells, a novel method of quasi-three-dimensional simulation using a cylindrical coordinate system was carried out. Interface recombination velocity at grain boundaries should be less than 103 cm/s based on the simulation results. Even at a relatively short diffusion length of Ln=50 μm, high efficiency larger than 16% will be expected at a thickness of 5–20 μm. Poly-Si films with columnar structures whose diameter was around 5 μm were successfully deposited on foreign substrates with APCVD at a high growth rate of 0.8 μm/min. Up-to-date status of reported cell performances were discussed in addition to future prospects.  相似文献   

20.
孙龙  任昊  冯大政  王石语  邢孟道 《物理学报》2018,67(17):178102-178102
由MoO3/Ag/MoO3 (MAM)组成的多层膜结构非常有希望替代ITO作为有机太阳能电池中的透明阳极.然而,基于MAM结构的有机太阳能电池光吸收能力较弱.为此,引入了一种小周期短节距金属光栅,利用表面等离子激元增强活性层的光吸收.借助于频域有限差分方法求解麦克斯韦方程和半导体方程,探讨了有机太阳能电池结构的光学和电学性质.分析结果表明:与平面结构相比,活性层中的光吸收大大提高;同时,当凹槽宽度为4 nm,能量转换效率提高了49%.相关结果有助于更好地开发和利用无ITO层的有机太阳能电池.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号