首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinetics of thermal decomposition of three structurally similar complexes Co2Cu(C2O4)3 (R-diam)2, where R is ethyl, 1,2-propyl or 1,3-propyl, was studied under non-isothermal conditions and nitrogen dynamic atmosphere at heating rates of 5, 7, 10, 12 and 15 K min−1. For data processing the Flynn-Wall-Ozawa and a modified non-parametric kinetic methods were used. By both methods the activation energy are in the range of 97–102 kJ mol−1. The formal kinetic is r=kα(1−α)2. Also a compensation effect between lnA and E was evidenced. The kinetic analysis lead to the conclusion of an identic decomposition mechanism by a single step process.  相似文献   

2.
The thermal behavior of sorbitol was studied under non-isothermal conditions, in both air and nitrogen atmosphere. The main process is a deep and continuous dehydration. For the kinetic analysis, the TG/DTG data obtained at five heating rates were processed by three different methods: Friedman, Budrugeac-Segal and non-parametric kinetic, respectively. This analysis indicates a complex reaction with a preponderant chemical process, described by a conversion function (1−α)3/2, accompanied by diffusion.  相似文献   

3.
Journal of Thermal Analysis and Calorimetry - This study investigated the kinetic analysis of the dehydration process of boric acid (H3BO3) and its transformation into boron trioxide (B2O3) under...  相似文献   

4.
Two series of copper (I) halide complexes formulated as [(L)CuX(μ2-L)2CuX(L)] and [(L)2Cu(μ2-L)2Cu(L)2]2+, respectively (X = Cl, Br and L = 4,6-dimethylpyrimidine-2-thione (dmpymtH)) were prepared. From the thermogravimetric curves it was found that among the four studied materials, [Cu2(dmpymtH)6]2+2Cl presents a lower thermal stability. For the determination of the activation energy (E) two different methods have been used comparatively, since every method has its own error. These methods were the isoconversional methods of Ozawa, Flynn and Wall (OFW), and Friedman. The dependence of the E on the value of the mass conversion α, as calculated with OFW and Friedman’s methods, can be separated in three distinct regions. The decomposition mechanism is very complex and can be described using at least three different mechanisms with different activation energies. The best fitting of experimental data with theoretical models gave nth-order for all the three mechanisms (Fn–Fn–Fn).  相似文献   

5.
Summary Pyrrolidinedithiocarbamate (Pyr), piperidinedithiocarbamate (Pip), morpholinedithiocarbamate (Mor) and diethanolaminedithiocarbamate (DEDC) ammonium salts; pyrrolidinedithiocarbamic acid-pyrrolidineammonium salt (HPyrPyr), piperidinedithiocarbamic acid-piperidineammonium salt (HPipPip), morpholinedithiocarbamic acid-morpholineammonium salt (HMorMor), hexamethylenedithiocarbamic acid-hexamethyleneammonium salt (HHexHex), diethanolaminedithiocarbamic acid-diethanolamineammonium salt (HDEADEDC) were synthesized, characterized by IR and elemental analysis and their thermal behaviours were investigated using thermogravimetry (TG) and differential scanning calorimetry (DSC).  相似文献   

6.
The thermal decomposition of salbutamol (β2 — selective adrenoreceptor) was studied using differential scanning calorimetry (DSC) and thermogravimetry/derivative thermogravimetry (TG/DTG). It was observed that the commercial sample showed a different thermal profile than the standard sample caused by the presence of excipients. These compounds increase the thermal stability of the drug. Moreover, higher activation energy was calculated for the pharmaceutical sample, which was estimated by isothermal and non-isothermal methods for the first stage of the thermal decomposition process. For isothermal experiments the average values were E act=130 kJ mol−1 (for standard sample) and E act=252 kJ mol−1 (for pharmaceutical sample) in a dynamic nitrogen atmosphere (50 mL min−1). For non-isothermal method, activation energy was obtained from the plot of log heating rates vs. 1/T in dynamic air atmosphere (50 mL min−1). The calculated values were E act=134 kJ mol−1 (for standard sample) and E act=139 kJ mol−1 (for pharmaceutical sample).  相似文献   

7.
8.
9.
A comparative study of the isothermal and non-isothermal decompositions of malonic acid has been carried out using the gasometric technique at atmospheric pressure. Under isothermal conditions, the results indicate two different mechanisms. At lower operating temperatures the decomposition process is governed by first-order kinetics, while at higher temperatures it is controlled by the random nucleation Erofeev equation. Analysis of the non-isothermal TG curves proved the advantageous use of this technique. It provides quick and valid information about the thermal decomposition kinetics of malonic acid, both in the pure state and when catalysed by solid 12-molybdophosphoric acid and its bismuth salts. Via the applicability of a non-isothermal kinetic equation, it was demonstrated that the factor causing the enhancement effect of these catalysts is mainly electronic in nature.
Zusammenfassung Mittels Gasometertechnik bei atmosphärischem Druck wurde eine vergleichende Betrachtung der isothermen und nichtisothermen Zersetzung von Malonsäure durchgeführt. Die Ergebnisse zeigen unter isothermen Bedingungen zwei verschiedene Mechanismen. Während die Zersetzungsprozesse bei niedrigeren Temperaturen durch eine Reaktionskinetik erster Ordnung bestimmt werden, findet bei höheren Temperaturen die Randomkeimbildungsgleichung von Erofeev Anwendung. Diese Technik konnte bei der Auswertung der nichtisothermen TG-Kurven vorteilhaft angewendet werden. Sie liefert schnelle und stichhaltige Informationen über die thermische Zersetzungkinetik von Malonsäure sowohl rein als auch in Gegenwart eines Katalysators, der in Form von 12-Molybdatophosphorsäure oder deren Bismutsalzen als Feststoffkatalysator beigemischt wird. Auf der Basis der Anwendbarkeit der nichtisothermen Kinetikgleichung konnte gezeigt werden, daß der Verstärkungseffekt dieser Katalysatoren hauptsächlich auf Faktoren elektronischer Natur zurückgeführt werden kann.

. , , . , . . , , , 12- . , , .
  相似文献   

10.
Thermal analysis is one of the most widely used methods for studying the solid state of pharmaceutical substances. TG/DTG and DSC curves provide important information regarding the physical properties of the pharmaceutical compounds (stability, compatibility, polymorphism, kinetic analysis, phase transitions etc.). The purpose of a kinetic investigation is to calculate the kinetic parameters and the kinetic model for the studied process. The results are further used to predict the system’s behaviour in various circumstances. A kinetic study regarding the diazepam, nitrazepam and oxazepam thermal decomposition was performed, under non-isothermal and isothermal conditions and in a nitrogen atmosphere, for the temperature steps: 483, 498, 523, 538 and 553 K. The TG/DTG data were processed by three methods: isothermal model-fitting, Friedman’s isothermal-isoconversional and Nomen-Sempere non-parametric kinetics. In the model-fitting methods the kinetic triplets (f(α), A and E a) that defines a single reaction step resulted in being at variance with the multi-step nature of diazepines decomposition. The model-free approach represented by isothermal and non-isothermal isoconversional methods, gave dependences of the activation energies on the extent of conversion. It is very difficult to obtain an accord with the similar data which resulted under non-isothermal conditions from a previous work. The careful treatment of the kinetic parameters obtained in different thermal conditions was confirmed to be necessary, as well as a different strategy of experimental data processing.  相似文献   

11.
The kinetics of the thermal decomposition of CoOOH powder has been studied isothermally in a temperature range of 260—310°C in air. The reaction was found to proceed by the advance of a two-dimensional reaction interface. The kinetics results indicate that there are two phases in the decomposition in this temperature range: up to 280°C with an activation energy E1 = 34.75 kcal mol−1 and above 280°C with E2 = 18.91 kcal mol−1. A reaction mechanism is proposed to account for these observations.  相似文献   

12.
Enthalpies of the decomposition reactions MX2L2(c)→MX2(c) + 2L (g), where M is Mn, Co, Ni, Cu, or Cd, X is Cl and/or Br, and L is benzothiazole or 2-methyl-benzothiazole have been measured by use of a differential scanning calorimeter. Specific heats and enthalpies of sublimation of some of the complexes have been obtained.  相似文献   

13.
Enthalpies of the overall decomposition reactions
and of the intermediate reactions involving stepwise loss of ligand, L, where M is Mn, Co, Ni, Cu, or Cd, X is Cl or Br, and L is benzoxazole, 2-methylbenzoxazole, or 2,5-dimethylbenzoxazole have been measured by use of a differential scanning calorimeter. Specific heats of CoCl2(2-methylbenzoxazole)2, and CoBr2(2-methylbenzoxazole)2 are reported together with enthalpies of sublimation of CoCl2(2-methylbenzoxazole)2, CoBr2(2-methyl-benzoxazole)2, CoCl2(2,5-dimethylbenzoxazole)2 and CoBr2(2,5-dimethylbenzoxazole)2. Enthalpies of decomposition of benzoxazole complexes are found to be greater than those of the corresponding pyridine complexes, but less than those of the analogous benzothiazole complexes. However, the mean bond dissociation energies of the cobalt—nitrogen and cobalt—oxygen bonds in these complexes are all in the region 33±2 kcal mol?.  相似文献   

14.
The activation energy of decomposition of aluminium hydroxidevs. weight loss was estimated from thermogravimetric data collected over a wide range of heating rates, without resorting to the model of the reaction mechanism.These activation energy values were subsequently used to distinguish individual dehydration stages and to determine the best models of the reaction kinetics for these stages.Finally, the overall decomposition model was formulated, and its parameters were determined by the non-linear estimation approach.
Zusammenfassung Die Aktivierungsenergie der Zersetzung von Aluminiumhydroxid wurde in Abhängigkeit vom Gewichtsverlust aus einen weiten Bereich von Aufheizgeschwindigkeiten umfassenden thermogravimetrischen Daten gesammelt, ohne auf das Modell des Reaktionsmechanismus einzugehen.Diese Werte der Aktivierungsenergien wurden daraufhin zur Unterscheidung einzelner Dehydratisierungsstufen und zur Bestimmung der besten Modelle der Reaktionskinetik dieser Stufen eingesetzt.Schließlich wurde ein allgemeines Zersetzungsmodell formuliert und seine Parameter durch nichtlineare Schätzungsnäherung bestimmt.

Résumé On a estimé l'énergie d'activation de la décomposition de l'oxyde d'aluminium en fonction de la perte de poids à partir de données thermogravimétriques obtenues avec un large intervalle de vitesses de chauffage, sans avoir recours au modèle du mécanisme de la réaction. On a utilisé ensuite ces valeurs de l'énergie d'activation pour distinguer les étapés individuelles de la déshydratation et pour déterminer les meilleurs modèles de cinétique réactionnelle correspondant à celles-ci.Enfin, on a formulé un modèle général de décomposition et déterminé ces paramètres par approximations non linéaires.

, , . . .
  相似文献   

15.
In the present work, the thermal decomposition of glimepiride (sulfonylurea hypoglycemic agent) was studied using differential scanning calorimetry (DSC) and thermogravimetry/derivative thermogravimetry (TG/DTG). Isothermal and non-isothermal methods were employed to determine kinetic data of decomposition process. The physical chemical properties and compatibilities of several commonly used pharmaceutical excipients (glycolate starch, microcrystalline cellulose, stearate, lactose and Plasdone®) with glimepiride were evaluated using thermoanalytical methods. The 1:1 physical mixtures of these excipients with glimepiride showed physical interaction of the drug with Mg stearate, lactose and Plasdone®. On the other hand, IR results did not evidence any chemical modifications. From isothermal experiments, activation energy (E a) can be obtained from slope of lnt vs. 1/T at a constant conversion level. The average value of this energy was 123 kJ mol–1. For non-isothermal method E a can be obtained from plot of logarithms of heating rates, as a function of inverse of temperature, resulting a value of 157 and 150 kJ mol–1, respectively, in air and N2 atmosphere, from the first stage of thermal decomposition.  相似文献   

16.
Different calculation methods applied to TG, DTG and DTA curves obtained with a Mettler Thermoanalyzer at one or several heating rates have been tested. It has been shown that the dehydration of syngenite can best be described by the Avrami equation I [–1n(1–)]1/2=3.46·1021exp (–2.73·104/T)·t where is the degree of decomposition,T the absolute temperature, andt the time.The mean value of the activation energy is 54 kcal·mole–1. This is in good agreement with the results obtained under isothermal conditions. The method of atava and kvára, supplemented by the numerical tables of Zsakó, is most useful in obtaining the kinetic equations describing the thermal decomposition of solids.
Zusammenfassung Mit verschiedenen Berechnungsmethoden wurde anhand der TG, DTG und DTA-Kurven, die bei einer und mehreren Aufheizgeschwindigkeiten der Probe im Thermoanalysator der Firma Mettler erhalten wurden bewiesen, daß die kinetische Gleichung zur Beschreibung des Dhydratisierungsprozesses des Syngenits folgende Gestalt hat: [–1n(1–)]1/2=3.46·1021 exp (–2.73·104/T)·t (-Zersetzungsgrad,T absolute Temperatur,t-Zeit) Der Mittelwert der Aktivierungsenergie beträgt: 54 kcal·mol–1. Die Gleichung und die Werte der kinetischen Parameter stimmen gut mit den Ergebnissen der isothermen Experimente überein. Bei den Untersuchungen thermischer Reaktionen der Zersetzung von Festkörpern hat sich die Methode von atava und kvára, ergänzt durch die numerische Tabelle von Zsakó als besonders geeignet erwiesen.

Résumé Divers procédés de calcul appliqués aux courbes TG, TGD et ATD obtenues à l'aide d'un thermoanalyseur Mettler, avec une ou plusieurs vitesses de chauffage, conduisent à l'équation cinétique suivante pour exprimer le processus de déshydratation de la syngénite: [–1n (1–)]1/2=3.46·1021exp (–2.73·104/T)·t où =degré de décomposition,T=température absolute,t=temps. La valeur moyenne de l'énergie d'activation est 54 kcal·mol–1, en bon accord avec les résultats des études en conditions isothermes. La méthode de atava et kvára, combinée avec les tables numériques de Zsakó, s'est révélée la plus efficace pour l'obtention de l'équations décrivant la cinétique de la décomposition thermique des corps solides.

« » -, , . , , : [–1n(1–)]1/2=3.46·1021 exp (–2.73·104/T)·t - ,— ,t — . , 54 . –1. , . , , -log() III III.


The authors would like to thank Dr. E. M. Bulewicz of this Department for valuable discussions, and Dr. M. Szakowicz and Mr. B. Gawliczek for carrying out the measurements on the Mettler instrument at the Institute of Metallurgy at the School of Mining and Metallurgy in Cracow.  相似文献   

17.
The kinetics of the thermal decomposition of Cu- and Co-itaconato complexes were studied using dynamic thermogravimetric techniques. The dehydration process was found to proceed in a one-stage reaction, while the thermal decomposition of the anhydrous salts was followed a two-stage reaction. The first stage is the decomposition of the complex to metal carbonate, whereas the second stage is the decomposition of the formed carbonate to the oxide. Kinetic analysis of the dynamic TG curves were discussed with reference to a composite integral method on comparison with the integral methods of Coats and Redfern and Ozawa. The activation parameters were calculated and discussed for each decomposition step.  相似文献   

18.
The thermal decomposition of alkoxides and amides of magnesium have been studied by vacuum TGA under both isothermal and non-isothermal conditions. These compounds were found to follow a unimolecular decay law, which in integrated form is ln(1  α)  kt, where α is the fraction of material reacted, and k is the Arrhenius rate constant. The rate-controlling process is random nucleation, one nucleus on each particle. Energies of activation calculated by isothermal and non-isothermal methods agree to within ±20%.  相似文献   

19.
20.
A “true” kinetic compensation effect was established using the most appropriate kinetic functionF(α) for the non-isothermal decomposition of solids at various heating rates. It is likely that the correct kinetic mechanismF(α) is responsible for the “true” kinetic compensation effect, whereas an inappropriateF(α) would lead to “false” one. An establishment of such a “true” compensation effect between the isothermal and nonisothermal decompositions of a solid implies thatF(α) used is appropriate for both the isothermal and non-isothermal decompositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号