首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Condensation of Ph(2)PH and paraformaldehyde with 2-amino-7-methyl-1,8-naphthyridine gave the new flexible tridentate ligand 2-[N-(diphenylphosphino)methyl]amino-7-methyl-1,8-naphthyridine (L). Reaction of L with [Cu(CH(3)CN)(4)]BF(4) and/or different ancillary ligands in dichloromethane afforded N,P chelating or bridging luminescent complexes [(L)(2)Cu(2)](BF(4))(2), [(micro-L)(2)Cu(2)(PPh(3))(2)](BF(4))(2) and [(L)Cu(CNN)]BF(4) (CNN = 6-phenyl-2,2'-bipyridine), respectively. Complexes [(L)(2)Pt]Cl(2), [(L)(2)Pt](ClO(4))(2) and [(L)Pt(CNC)]Cl (CNC = 2,6-biphenylpyridine) were obtained from the reactions of Pt(SMe(2))(2)Cl(2) or (CNC)Pt(DMSO)Cl with L. The crystal structures and photophysical properties of the complexes are presented.  相似文献   

2.
Two cationic carbene complexes with no heteroatom in the ring containing the carbene carbon, trans-bromo(2-methyl-2,6-dihydroisoquinolin-6-ylidene)bis(triphenylphosphine)palladium(II) triflate (3) and trans-chloro(1,2-dimethyl-1,7-dihydroquinolin-7-ylidene)bis(triphenylphosphine)palladium(II) triflate (4), were synthesized by oxidative substitution of Pd(PPh3)4 with N-methylated 6-bromoisoquinolinium and 7-chloro-2-methylquinolinium cations, respectively. Compound 3 was also prepared by methylation of neutral trans-bromo(2-methylisoquinolin-6-yl)bis(triphenylphosphine)palladium(II) (5). All complexes were unambiguously characterized by NMR and X-ray crystallographic studies.  相似文献   

3.
A family of hexa-coordinated ruthenium(II) complexes of bis(N-pyridylimidazolylidenyl)methane (L) were prepared and structurally characterized. Carbene transfer reactions of [Ru(p-cymene)Cl(2)](2), [Ru(CO)(2)Cl(2)](n) and RuHCl(CO)(PPh(3))(3) with silver-NHC complexes in situ generated from [H(2)L](PF(6))(2) and Ag(2)O afforded [RuL(CH(3)CN)(2)](PF(6))(2) (1), [Ru(2)L(p-cymene)(2)Cl(2)](PF(6))(2) (2), [RuL(CO)(2)](PF(6))(2) (3) and [RuL(PPh(3))(2)](PF(6))(2) (4), respectively. The reactions of 1 towards several N- and P-donors were studied. The treatment of 1 with 1,10-phenanthroline resulted in the substitution of one pyridine and one acetonitrile molecule affording [RuL(phen)(CH(3)CN)](PF(6))(2) (5) as a mixture of two isomers. Reaction of 1,2-bis(diphenylphosphino)ethane (dppe) and 1 gave [RuL(dppe)(CH(3)CN)(2)](PF(6))(2) (7), in which two pyridines were substituted by a dppe ligand trans to two NHC groups. In contrast, reactions of 1 with ethane-1,2-diamine, propane-1,3-diamine and 3,5-dimethyl-1H-pyrazole led to the substitution of acetonitrile and subsequent N-H addition of the C≡N bond of the coordinated acetonitrile yielding [RuL(ethane-1,2-diamine)(N-(2-aminoethyl)acetimidamide)](PF(6))(2) (8), [RuL(propane-1,3-diamine)(N-(3-aminopropyl)acetimidamide)](PF(6))(2) (9) and RuL(1-(3,5-dimethyl-1H-pyrazol-1-yl)ethanimine)(CH(3)CN)](PF(6))(2) (10), respectively.  相似文献   

4.
Reaction of [Os(VI)(N)(L(1))(Cl)(OH(2))] (1) with CN(-) under various conditions affords (PPh(4))[Os(VI)(N)(L(1))(CN)(Cl)] (2), (PPh(4))(2)[Os(VI)(N)(L(2))(CN)(2)] (3), and a novel hydrogen cyanamido complex, (PPh(4))(2)[Os(III){N(H)CN}(L(3))(CN)(3)] (4). Compound 4 reacts readily with both electrophiles and nucleophiles. Protonation and methylation of 4 produce (PPh(4))[Os(III)(NCNH(2))(L(3))(CN)(3)] (5) and (PPh(4))[Os(III)(NCNMe(2))(L(3))(CN)(3)] (6), respectively. Nucleophilic addition of NH(3), ethylamine, and diethylamine readily occur at the C atom of the hydrogen cyanamide ligand of 4 to produce osmium guanidine complexes with the general formula [Os(III){N(H)C(NH(2))NR(1)R(2)}(L(3))(CN)(3)](-) , which have been isolated as PPh(4) salts (R(1) = R(2) = H (7); R(1) = H, R(2) = CH(2)CH(3) (8); R(1) = R(2) = CH(2)CH(3) (9)). The molecular structures of 1-5 and 7 and 8 have been determined by X-ray crystallography.  相似文献   

5.
The ethene derivatives [(eta(5)-C(5)R(5))RuX(C(2)H(4))(PPh(3))] with R=H and Me, which have been prepared from the eta(3)-allylic compounds [(eta(5)-C(5)R(5))Ru(eta(3)-2-MeC(3)H(4))(PPh(3))] (1, 2) and acids HX under an ethene atmosphere, are excellent starting materials for the synthesis of a series of new halfsandwich-type ruthenium(II) complexes. The olefinic ligand is replaced not only by CO and pyridine, but also by internal and terminal alkynes to give (for X=Cl) alkyne, vinylidene, and allene compounds of the general composition [(eta(5)-C(5)R(5))RuCl(L)(PPh(3))] with L=C(2)(CO(2)Me)(2), Me(3)SiC(2)CO(2)Et, C=CHCO(2)R, and C(3)H(4). The allenylidene complex [(eta(5)-C(5)H(5))RuCl(=C=C=CPh(2))(PPh(3))] is directly accessible from 1 (R=H) in two steps with the propargylic alcohol HC triple bond CC(OH)Ph(2) as the precursor. The reactions of the ethene derivatives [(eta(5)-C(5)H(5))RuX(C(2)H(4))(PPh(3))] (X=Cl, CF(3)CO(2)) with diazo compounds RR'CN(2) yield the corresponding carbene complexes [(eta(5)-C(5)R(5))RuX(=CRR')(PPh(3))], while with ethyl diazoacetate (for X=Cl) the diethyl maleate compound [(eta(5)-C(5)H(5))RuCl[eta(2)-Z-C(2)H(2)(CO(2)Et)(2)](PPh(3))] is obtained. Halfsandwich-type ruthenium(II) complexes [(eta(5)-C(5)R(5))RuCl(=CHR')(PPh(3))] with secondary carbenes as ligands, as well as cationic species [(eta(5)-C(5)H(5))Ru(=CPh(2))(L)(PPh(3))]X with L=CO and CNtBu and X=AlCl(4) and PF(6), have also been prepared. The neutral compounds [(eta(5)-C(5)H(5))RuCl(=CRR')(PPh(3))] react with phenyllithium, methyllithium, and the vinyl Grignard reagent CH(2)=CHMgBr by displacement of the chloride and subsequent C-C coupling to generate halfsandwich-type ruthenium(II) complexes with eta(3)-benzyl, eta(3)-allyl, and substituted olefins as ligands. Protolytic cleavage of the metal-allylic bond in [(eta(5)-C(5)H(5))Ru(eta(3)-CH(2)CHCR(2))(PPh(3))] with acetic acid affords the corresponding olefins R(2)C=CHCH(3). The by-product of this process is the acetato derivative [(eta(5)-C(5)H(5))Ru(kappa(2)-O(2)CCH(3))(PPh(3))], which can be reconverted to the carbene complexes [(eta(5)-C(5)H(5))RuCl(=CR(2))(PPh(3))] in a one-pot reaction with R(2)CN(2) and Et(3)NHCl.  相似文献   

6.
萘啶酮的单核和双核银配合物的合成与晶体结构   总被引:2,自引:0,他引:2       下载免费PDF全文
合成了萘啶酮的单核和双核银配合物Ag2(L1)2(HL1=5,7-二甲基-1,8-萘啶-2-酮) (1)和[Ag(HL2)(PPh3)2]·2H2O(H2L2=1,8-萘啶-2,7-二酮) (2)。并通过元素分析,红外光谱及X-射线单晶衍射对其进行了结构表征。配合物1的晶体属单斜晶系,P1空间群。中心金属银为三配位T型几何构型,Ag-Ag间距离为0.274 8(2) nm,具有强的Ag…Ag作用。配合物2的晶体属三斜晶系,P21/n空间群。银与1个氮原子及2个磷原子形成三配位结构。  相似文献   

7.
Ethyl 2-{2-[4-(2,3-dimethyl-5-oxo-1-phenyl-3-(pyrazolin-4-yl)]-2-cyano-1-(phenylamino)vinylthio}-acetate, 2-[4-(2,3-dimethyl-5-oxo-1-phenyl-(3-pyrazolin-4-yl))(1,3-thiazol-2-yl)]2-(4-oxo-3-phenyl-(1,3-thiazoilidin-2-ylidene))ethanenitrile, 2-[4-(2,3-dimethyl-5-oxo-1-phenyl(3-pyrazolin-4-yl))(1,3-thiazol-2-yl)]-2-(4-methyl-3-phenyl(1,3-thiazolin-2-ylidene))ethanenitrile, 2-(5-acetyl-4-methyl-3-phenyl(1,3-thiazolin-2-ylidene))-2-[4-(2,3-dimethyl-5-oxo-1-phenyl(3-pyrazolin-4-yl))(1,3-thiazol-2-yl)]ethanenitrile, and ethyl 2-(cyano(4-(2,3-dihydro-1,5-dimethyl-3-oxo-2-phenyl-1H-pyrazol-4-yl)thiazol-2-yl)methylene)-2,3-dihydro-4-methyl-3-phenylthiazole-5-carboxylate were synthesized by treatment of 2-(4-(2,3-dihydro-1,5-dimethyl-3-oxo-2-phenyl-1H-pyrazol-4-yl)thiazol-2-yl)-3-mercapto-3-(phenylamino)-acrylonitrile with appropriate halo ketones or halo esters. Also, 4-{2-[5,7-dimethyl-2-(phenylamino)(7a-hydropyrazolo[1,5-a]pyrimidin-3-yl](1,-thiazol-4-yl)}-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one derivatives were synthesized via reaction of 4-{2-[5-amino-3-(phenylamino)pyrazolin-4-yl](1,3-thiazol-2-yl)}-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one with β-diketone or β-keto ester. All synthesized compound were established by elemental analysis, spectral data, and alternative synthesis whenever possible.  相似文献   

8.
The new N,N,O ligand 2,2-bis(3,5-dimethylpyrazol-1-yl)propionic acid (2,2-Hbdmpzp) (2) and its transition metal complexes [Mn(2,2-bdmpzp)(CO)(3)] (3), [Re(2,2-bdmpzp)(CO)(3)] (4), [Cu(2,2-bdmpzp)(2)] (5), and [Ru(2,2-bdmpzp)Cl(L)(PPh(3))] [L = PPh(3) (6), N(2) (7), CO (8a/b), SO(2) (9a/b)] have been synthesized, characterized and compared to analogous complexes bearing a bis(3,5-dimethylpyrazol-1-yl)acetic acid. It was found that the additional methyl group has a remarkable influence on the stability and reactivity of transition metal complexes.  相似文献   

9.
Treatment of [CpRu(PPh(3))(2)Cl] 1 with the stoichiometric amount of H(3)PO(2) or H(3)PO(3) in the presence of chloride scavengers (AgCF(3)SO(3) or TlPF(6)) yields compounds of formula [CpRu(PPh(3))(2)(HP(OH)(2))]Y (Y = CF(3)SO(3) 2a or PF(6) 2b) and [CpRu(PPh(3))(2)(P(OH)(3))]Y (Y = CF(3)SO(3) 3aor PF(6) 3b) which contain, respectively, the HP(OH)(2) and P(OH)(3) tautomers of hypophosphorous and phosphorous acids bound to ruthenium through the phosphorus atom. The triflate derivatives 2a and 3a react further with hypophosphorous or phosphorous acids to yield, respectively, the complexes [CpRu(PPh(3))(HP(OH)(2))(2)]CF(3)SO(3) 4 and [CpRu(PPh(3))(P(OH)(3))(2)]CF(3)SO(3) 5 which are formed by substitution of one molecule of the acid for a coordinated triphenylphosphine molecule. The compounds 2 and 3 are quite stable in the solid state and in solutions of common organic solvents, but the hexafluorophosphate derivatives undergo easy transformations in CH(2)Cl(2): the hypophosphorous acid complex 2b yields the compound [CpRu(PPh(3))(2)(HP(OH)(2))]PF(2)O(2) 6, whose difluorophosphate anion originates from hydrolysis of PF(6)(-); the phosphorous acid complex 3b yields the compound [CpRu(PPh(3))(2)(PF(OH)(2))]PF(2)O(2) 7, which is produced by hydrolysis of hexafluorophosphate and substitution of a fluorine for an OH group of the coordinated acid molecule. All the compounds have been characterized by elemental analyses and NMR measurements. The crystal structures of 2a, 3a and 7 have been determined by X-ray diffraction methods.  相似文献   

10.
The reaction of AgClO(4) and NH(3) in acetone gave [Ag(NH=CMe(2))(2)]ClO(4) (1). The reactions of 1 with [RhCl(diolefin)](2) or [RhCl(CO)(2)](2) (2:1) gave the bis(acetimine) complexes [Rh(diolefin)(NH=CMe(2))(2)]ClO(4) [diolefin = 1,5 cyclooctadiene = cod (2), norbornadiene = nbd (3)] or [Rh(CO)(2)(NH=CMe(2))(2)]ClO(4) (4), respectively. Mono(acetimine) complexes [Rh(diolefin)(NH=CMe(2))(PPh(3))]ClO(4) [diolefin = cod (5), nbd (6)] or [RhCl(diolefin)(NH=CMe(2))] [diolefin = cod (7), nbd (8)] were obtained by reacting 2 or 3 with PPh(3) (1:1) or with Me(4)NCl (1:1.1), respectively. The reaction of 4 with PR(3) (R = Ph, To, molar ratio 1:2) led to [Rh(CO)(NH=CMe(2))(PR(3))(2)]ClO(4) [R = Ph (9), C(6)H(4)Me-4 = To (10)] while cis-[Rh(CO)(NH=CMe(2))(2)(PPh(3))]ClO(4) (11) was isolated from the reaction of 1 with [RhCl(CO)(PPh(3))](2) (1:1). The crystal structures of 5 and [Ag[H(2)NC(Me)(2)CH(2)C(O)Me](PTo(3))]ClO(4) (A), a product obtained in a reaction between NH(3), AgClO(4), and PTo(3), have been determined.  相似文献   

11.
Four new bivalent nickel hydrazone complexes have been synthesised from the reactions of [NiCl(2)(PPh(3))(2)] with H(2)L {L = dianion of the hydrazones derived from the condensation of salicylaldehyde or o-hydroxy acetophenone with p-toluic acid hydrazide (H(2)L(1)) (1), (H(2)L(2)) (2) and o-hydroxy acetophenone or o-hydroxy naphthaldehyde with benzhydrazide (H(2)L(3)) (3) and (H(2)L(4)) (4)} and formulated as [Ni(L(1))(PPh(3))] (5), [Ni(L(2))(PPh(3))] (6), [Ni(L(3))(PPh(3))] (7) and [Ni(L(4))(PPh(3))] (8). Structural characterization of complexes 5-8 were accomplished by using various physico-chemical techniques. In order to study the influence of substitution in the ligand and its planarity on the biological activity of complexes 5-8 containing them, suitable hydrazone ligands 1-4 have been selected in this study. Single crystal diffraction data of complexes 5, 7 and 8 proved the geometry of the complexes to be distorted square planar with a 1 : 1 ratio between the metal ion and the coordinated hydrazones. To provide more insight on the mode of action of complexes 5-8 under biological conditions, additional experiments involving their interaction with calf thymus DNA (CT DNA) and bovine serum albumin (BSA) were monitored by UV-visible and fluorescence titrations respectively. Further, the ligands 1-4 and corresponding nickel(ii) chelates 5-8 have been tested for their scavenging effect towards OH and O(2)(-) radicals. The effect of complexes 5-8 to arrest the growth of HeLa and Hep-2 tumour cell lines has been studied along with the cell viability against the non-cancerous NIH 3T3 cells under in vitro conditions.  相似文献   

12.
Shakya R  Wang Z  Powell DR  Houser RP 《Inorganic chemistry》2011,50(22):11581-11591
The ligand binding preferences of a series of potentially pentadentate pyridylbis(aminophenol) ligands were explored. In addition to the previously reported ligands 2,2'-(2-methyl-2-(pyridin-2-yl)propane-1,3-diyl)bis(azanediyl)bis(methylene)diphenol (H(2)L(1)) and 6,6'-(2-methyl-2-(pyridin-2-yl)propane-1,3-diyl)bis(azanediyl)bis(methylene)bis(2,4-di-tert-butylphenol) (H(2)L(1-tBu)), four new ligands were synthesized: 6,6'-(2-methyl-2(pyridine-2-yl)propane-1,3-diyl)bis(azanediyl)bis(methylene)bis(2,4-dibromophenol) (H(2)L(1-Br)), 6,6'-(2-methyl-2(pyridine-2-yl)propane-1,3diyl)bis(azanediyl)bis(methylene)bis(2-methoxyphenol) (H(2)L(1-MeO)), 2,2'-(2-methyl-2(pyridine-2-yl)propane-1,3diyl)bis(azanediyl)bis(methylene)bis(4-nitrophenol) (H(2)L(1-NO2)), and 2,2'-(2-phenylpropane-1,3-diyl)bis(azanediyl)bis(methylene)diphenol (H(2)L(2)). These ligands, when combined with copper(II) salts and base, form either tricopper(II) species or monocopper(II) species depending on the nucleophilicity of the phenol groups in the ligands. All copper complexes were characterized by X-ray crystallography, cyclic voltammetry, and spectroscopic methods in solution. The ligands in trimeric complexes [{CuL(1)(CH(3)CN)}(2)Cu](ClO(4))(2) (1), [{CuL(1)Cl}(2)Cu] (1a), and [{CuL(2)(CH(3)CN)}(2)Cu](ClO(4))(2) (1b) and monomeric complex [CuL(1-tBu)(CH(3)OH)] (2) coordinate in a tetradentate mode via the amine N atoms and the phenolato O atoms. The pyridyl groups in 1, 1a, and 2 do not coordinate, but instead are involved in hydrogen bonding. Monomeric complexes [CuL(1-Br)] (3a), [CuL(1-NO2)] (3b), and [CuL(1-MeO)Na(CH(3)OH)(2)]ClO(4) (3c) have their ligands coordinated in a pentadentate mode via the amine N atoms, the phenolato O atoms, and the pyridyl N atom. The differences in tetradentate vs pentadentate coordination preferences of the ligands correlate to the nucleophilicity of the phenolate donor groups, and coincide with the electrochemical trends for these complexes.  相似文献   

13.
The preparation of a number of binuclear (salen)osmium phosphinidine and phosphiniminato complexes using various strategies are described. Treatment of [Os(VI)(N)(L(1))(sol)](X) (sol = H(2)O or MeOH) with PPh(3) affords an osmium(IV) phosphinidine complex [Os(IV){N(H)PPh(3)}(L(1))(OMe)](X) (X = PF(6)1a, ClO(4)1b). If the reaction is carried out in CH(2)Cl(2) in the presence of excess pyrazine the osmium(III) phosphinidine species [Os(III){N(H)PPh(3)}(L(1))(pz)](PF(6)) 2 can be generated. On the other hand, if the reaction is carried out in CH(2)Cl(2) in the presence of a small amount of H(2)O, a μ-oxo osmium(IV) phosphinidine complex is obtained, [(L(1)){PPh(3)N(H)}Os(IV)-O-Os(IV){N(H)PPh(3)}(L(1))](PF(6))(2)3. Furthermore, if the reaction of [Os(VI)(N)(L(1))(OH(2))]PF(6) with PPh(3) is done in the presence of 2, the μ-pyrazine species, [(L(1)){PPh(3)N(H)}Os(III)-pz-Os(III){N(H)PPh(3)}(L(1))](PF(6))(2)4 can be isolated. Novel binuclear osmium(IV) complexes can be prepared by the use of a diphosphine ligand to attack two Os(VI)≡N. Reaction of [Os(VI)(N)(L(1))(OH(2))](PF(6)) with PPh(2)-C≡C-PPh(2) or PPh(2)-(CH(2))(3)-PPh(2) in MeOH affords the binuclear complexes [(MeO)(L(1))Os(IV){N(H)PPh(2)-R-PPh(2)N(H)}Os(IV)(L(1))(OMe)](PF(6))(2) (R = C≡C 5, (CH(2))(3)6). Reaction of [Os(VI)(N)(L(2))Cl] with PPh(2)FcPPh(2) generates a novel trimetallic complex, [Cl(L(2))Os(IV){NPPh(2)-Fc-PPh(2)N}Os(IV)(L(2))Cl] 7. The structures of 1b, 2, 3, 4, 5 and 7 have been determined by X-ray crystallography.  相似文献   

14.
The treatment of [Ru(L(OEt))(N)Cl(2)] (1; L(OEt)(-) = [Co(η(5)-C(5)H(5)){P(O)(OEt)(2)}(3)](-)) with Et(3)SiH affords [Ru(L(OEt))Cl(2)(NH(3))] (2), whereas that with [Ru(L(OEt))(H)(CO)(PPh(3))] (3) gives the dinuclear imido complex [(L(OEt))Cl(2)Ru(μ-NH)Ru(CO)(PPh(3))(L(OEt))] (4). The imido group in 4 binds to the two ruthenium atoms unsymmetrically with Ru-N distances of 1.818(6) and 1.952(6) ?. The reaction between 1 and 3 at 25 °C in a toluene solution is first order in both complexes with a second-order rate constant determined to be (7.2 ± 0.4) × 10(-5) M(-1) s(-1).  相似文献   

15.
The monocarbon carborane [Cs][nido-7-CB(10)H(13)] reacts with the 16-electron [RuCl(2)(PPh(3))(3)] in a solution of benzene/methanol in the presence of N,N,N',N'-tetramethylnaphthalene-1,8-diamine as the base to give a series of 12-vertex monocarbon arene-biruthenacarborane complexes of two types: [closo-2-[7,11-exo-RuClPPh(3)(mu,eta(6)-C(6)H(5)PPh(2))]-7,11-(mu-H)(2)-2,1-RuCB(10)H(8)R] (5, R = H; 6, R = 6-MeO; 7, R = 3-MeO) and [closo-2-(eta(6)-C(6)H(6))-10,11,12-[exo-RuCl(PPh(3))(2)]-10,11,12-(mu-H)(3)-2,1-RuCB(10)H(7)R(1)] (8a, R(1) = 6-MeO; 8b, R(1) = 3-MeO, inseparable mixture of isomers) along with trace amounts of 10-vertex mononuclear hypercloso/isocloso-type complexes [2,2-(PPh(3))(2)-2-H-3,9-(MeO)(2)-2,1-RuCB(8)H(7)] (9) and [2,5-(Ph(3)P)-2-Cl-2-H-3,9-(MeO)(2)-2,1-RuCB(8)H(6)] (10). Binuclear ruthenacarborane clusters of both series were characterized by a combination of analytical and multinuclear NMR spectroscopic data and by single-crystal X-ray diffraction studies of three selected complexes, 6-8. In solution, isomers 8a,b have been shown to undergo the isomerization process through the scrambling of the exo-[RuCl(PPh(3))(2)] fragment about two adjacent triangular cage boron faces B(7)B(11)B(12) and B(8)B(9)B(12).  相似文献   

16.
Platinum bisphosphine complexes bearing dichalcogen-derivatised naphthalene, acenaphthene or phenanthrene ligands have been prepared by either oxidative addition to zero-valent platinum species or from [PtCl(2)(PPhR(2))] (R=Ph or Me) and the disodium or dilithium salts of the parent disulfur, diselenide or mixed S/Se species. The parent naphthalene, acenaphthene and phenanthrene chalcogen compounds were treated with either [Pt(PPh(3))(4)] or [Pt(C(2)H(4))(PMe(3))(2)] (prepared in situ from [PtCl(2)(PMe(3))(2)], ethene and sodium naphthalide or super hydride [LiBEt(3)H]) to give the appropriate platinum(II) species. The dilithium salts of 1,8-E(2)-naphthalene (E=S or Se) prepared in situ by reduction of the E-E bond with [LiBEt(3)H] were treated with [PtCl(2)(PPh(3))(2)] to give [Pt(1,8-E(2)-nap)(PPh(3))(2)]. The tetraoxides [Pt(1,8-(S(O)(2))(2)-nap)(PR(3))(2)] (PR(3)=PPh(3) or PMe(2)Ph) were prepared in a similar metathetical manner from the appropriate [PtCl(2)(PR(3))] complexes and the disodium salt of naphthalene 1,8-disulfinic acid (1,8-(S(O)ONa)(2)-nap). The X-ray structures of selected examples reveal bidentate coordination with the naphthalene-E(2) unit hinged (111-137 degrees) with respect to the coordination plane. The naphthalene ring suffers significant distortion from planarity.  相似文献   

17.
The coordination abilities of the novel N,N'-diphosphino-silanediamine ligand of formula SiMe(2)(NtolPPh(2))(2) (SiNP, 1) have been investigated toward rhodium, and the derivatives [RhCl(SiNP)](2) (2), [Rh(SiNP)(COD)][BF(4)] (3), and Rh(acac)(SiNP) (4) have been synthesized. The stability of the dinuclear frame of [RhCl(SiNP)](2) (2) toward incoming nucleophiles has been shown to be dependent on their π-acceptor ability. Indeed, the mononuclear complexes RhCl(SiNP)(L) (L = CO, 5; CN(t)Bu, 6) have been isolated purely and quantitatively upon reaction of 2 with CO and CN(t)Bu, respectively. Otherwise, PPh(3) and RhCl(SiNP) equilibrate with Rh(Cl)(SiNP)(PPh(3)) (7). Carbon electrophiles such as MeI and 3-chloro-1-proprene afforded the oxidation of rhodium(I) to rhodium(III) and the formation of RhCl(2)(η(3)-C(3)H(5))(SiNP) (8) and Rh(Me)(I)(SiNP)(acac) (10), respectively. The methyl derivative 10 is thermally stable and does not react either with CO or with CN(t)Bu even in excess. Otherwise, RhCl(2)(η(3)-C(3)H(5))(SiNP) (8) is thermally stable but reacts with CO, affording 3-chloro-1-proprene and RhCl(SiNP)(CO) (5). Finally, upon reaction of Rh(acac)(SiNP) (4) and 3-chloro-1-proprene, RhCl(acac)(η(1)-C(3)H(5))(SiNP) (9a) and [Rh(acac)(η(3)-C(3)H(5))(SiNP)]Cl (9b) could be detected at 233 K. At higher temperatures, 9a and 9b smoothly decompose, affording the dinuclear derivative [RhCl(SiNP)](2) (2) and the CC coupling product 3-allylpentane-2,4-dione.  相似文献   

18.
The reaction of [AuCl(PR(3))] with [1,2-(Ph(2)P)(2)-1,2-C(2)B(10)H(10)] in refluxing ethanol proceeds with partial degradation (removal of a boron atom adjacent to carbon) of the closo species to give [Au{(PPh(2))(2)C(2)B(9)H(10)}(PR(3))] [PR(3) = PPh(3) (1), PPh(2)Me (2), PPh(2)(4-Me-C(6)H(4)) (3), P(4-Me-C(6)H(4))(3) (4), P(4-OMe-C(6)H(4))(3) (5)]. Similarly, the treatment of [Au(2)Cl(2)(&mgr;-P-P)] with [1,2-(Ph(2)P)(2)-1,2-C(2)B(10)H(10)] under the same conditions leads to the complexes [Au(2){(PPh(2))(2)C(2)B(9)H(10)}(2)(&mgr;-P-P)] [P-P = dppe = 1,2-bis(diphenylphosphino)ethane (6), dppp = 1,3-bis(diphenylphosphino)propane (7)], where the dppe or dppp ligands bridge two gold nido-diphosphine units. The reaction of 1 with NaH leads to removal of one proton, and further reaction with [Au(PPh(3))(tht)]ClO(4) gives the novel metallocarborane compound [Au(2){(PPh(2))(2)C(2)B(9)H(9)}(PPh(3))(2)] (8). The structure of complexes 1 and 7 have been established by X-ray diffraction. [Au{(PPh(2))(2)C(2)B(9)H(10)}(PPh(3))] (1) (dichloromethane solvate) crystallizes in the monoclinic space group P2(1)/c, with a = 17.326(3) ?, b = 20.688(3) ?, c = 13.442(2) ?, beta = 104.710(12) degrees, Z = 4, and T = -100 degrees C. [Au(2){(PPh(2))(2)C(2)B(9)H(10)}(2)(&mgr;-dppp)] (7) (acetone solvate) is triclinic, space group P&onemacr;, a = 13.432(3) ?, b = 18.888(3) ?, c = 20.021(3) ?, alpha = 78.56(2) degrees, beta = 72.02(2) degrees, gamma = 73.31(2) degrees, Z = 2, and T = -100 degrees C. In both complexes the gold atom exhibits trigonal planar geometry with the 7,8-bis(diphenylphosphino)-7,8-dicarba-nido-undecaborate(1-) acting as a chelating ligand.  相似文献   

19.
Reaction of the potassium salts of N-thiophosphorylated thioureas of common formula RC(S)NHP(S)(OiPr)(2) [R = morpholin-N-yl (HL(a)), piperidin-N-yl (HL(b)), NH(2) (HL(c)), PhCH(2)NH (HL(d))] with Cu(PPh(3))(3)I in aqueous EtOH/CH(2)Cl(2) leads to mononuclear [Cu(PPh(3))(2)L-S,S'] complexes. Using copper(i) iodide instead of Cu(PPh(3))(3)I, polynuclear complexes [Cu(n)(L-S,S')(n)] were obtained. The structures of these compounds were investigated by ES-MS, elemental analyses, 1H and 31P NMR in solution, IR and 31P solid-state MAS NMR spectroscopy. The crystal structures of [Cu(3)L(3)(a)] and [Cu(PPh(3))(2)L(b)] were determined by single-crystal X-ray diffraction.  相似文献   

20.
The synthesis of half-sandwich transition metal complexes containing both 1,2-dichalcogenolato-1,2-dicarba-closo-docecaborane (Cab(E,E)) [Cab(E,E)=E(2)C(2)(B(10)H(10)); E = S, Se] and N-heterocyclic carbene (NHC) ligands is described. Addition of mono-NHC ligand to the 16e half-sandwich dichalcogenolato carborane complexes [Cp*Rh(Cab(E,E))], [Cp*Ir(Cab(S,S))], [(p-cymene)Ru(Cab(S,S))] (Cp* = pentamethylcyclopentadienyl) gives corresponding mononuclear 18e dithiolate complexes of the type [LM(Cab(E,E))(NHC)]: [Cp*M(Cab(S,S))(1-ethenyl-3-methylimidazolin-2-ylidene)] (M = Ir (2), Rh (3)), [Cp*Rh(Cab(E,E))(3-methyl-1-picolyimidazolin-2-ylidene)] [E = S (6), Se (7)], [(p-cymene)Ru(Cab(S,S))(NHC)] [NHC = 1-ethenyl-3-methylimidazolin-2-ylidene (4), 3-methyl-1-picolyimidazolin-2-ylidene (8)], whereas bis-NHC give centrosymmetric binuclear complexes [{Cp*M(Cab(S,S))}(2)(1,1'-dimethyl-3,3'-methylene(imidazolin-2-ylidene))] [M = Rh (10), Ir (11)]. The complexes were characterized by IR, NMR spectroscopy and elemental analysis. In addition, X-ray structure analyses were performed on complexes 2-4, 6, 8, 10 and 11.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号