首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The use of a Q-q-Q(linear ion trap) instrument to obtain product ion spectra is described. The instrument is based on the ion path of a triple quadrupole mass spectrometer with Q3 operable as either a conventional RF/DC quadrupole mass filter or a linear ion trap mass spectrometer with axial ion ejection. This unique ion optical arrangement allows de-coupling of precursor ion isolation and fragmentation from the ion trap itself. The result is a high sensitivity tandem mass spectrometer with triple quadrupole fragmentation patterns and no inherent low mass cut-off. The use of the entrance RF-only section of the instrument as accumulation ion trap while the linear ion trap mass spectrometer is scanning enhances duty cycles and results in increased sensitivities by as much as a factor of 20. The instrument is also capable of all of the triple quadrupole scans including multiple-reaction monitoring (MRM) as well as precursor and constant neutral loss scanning. The high product ion scanning sensitivity allows the recording of useful product ion spectra near the MRM limit of quantitation.  相似文献   

2.
A range of strategies and tools have been developed to facilitate the determination of primary structures of analyte molecules of interest via tandem mass spectrometry (MS/MS). The two main factors that determine the primary structural information present in an MS/MS spectrum are the type of ion generated from the analyte molecule and the dissociation method. The ion type subjected to dissociation is determined by the ionization method/conditions and ion transformation processes that might take place after initial gas-phase ion formation. Furthermore, the range of analyte-related ion types can be expanded via derivatization reactions prior to mass spectrometry. Dissociation methods include those that simply alter the population of internal states of the mass-selected ion (i.e., activation methods like collision-induced dissociation) as well as processes that rely on the transformation of the ion type prior to dissociation (e.g., electron capture dissociation). A variety of ion interactions have been studied for the purpose of ion dissociation and ion transformation, including ion/neutral, ion/photon, ion/electron, and ion/ion interactions. A wide range of phenomena have been observed, many of which have been explored/developed as means for structural analysis. The techniques arising from these phenomena are discussed within the context of the elements of structural determination in tandem mass spectrometry: ion-type definition and dissociation. Unique aspects of the various ion interactions are emphasized along with any barriers to widespread implementation.  相似文献   

3.
Low-voltage on-resonance ion selection (LOIS) was recently introduced as an alternative technique for ion selection and storage. Under high pressure conditions and similar to the technique of quadrupolar axialization, unwanted (unselected) trapped ions are eliminated from the analysis cell through collisions with cell plates following orbital expansion. The ions remaining after tens of seconds of mass selection can be detected with better coherence, leading to improvements in ion detection and sensitivity. Here, experiments designed to test ion remeasurement and ion transfer capabilities are presented. Simulations of ion motion give insight into the possible mechanism of ion cooling, which does not appear to be the same as that of the axialization process. Because of its ease of use, lack of need for additional hardware devices, and comparable ion selection results, LOIS is an attractive alternative for trapped ion experiments.  相似文献   

4.
以铜离子为模板的褐藻酸凝胶对铜离子的选择性富集研究   总被引:2,自引:0,他引:2  
邬建敏  王永尧  杨晨磊 《分析化学》2002,30(12):1414-1417
以铜离子为模板,制备了褐藻酸凝胶(Cu-alginate),通过吸附实验及过柱渗滤实验,试验了该吸附剂对铜离子的选择性吸附性能,并且采用该吸附剂富集了自来水中微量的Cu^2 ,结合原子吸收法测定了水样中Cu^2 的含量。结果表明:该吸附剂对Cu^2 有较高的选择性吸附性能,显著优于一些化学合成铜离子模板缩聚物及非铜模板褐藻酸凝胶(如Ca-alginate),非重金属离子(如K^ 、Na^ 、Ca^2 )及某些重金属离子(如Ni^2 、Cd^2 )等对Cu^2 的吸附均不产生明显干扰。用该吸附剂富集水中的微量铜离子,回收率可达97.7%。  相似文献   

5.
Ion implantation has become a highly developed tool for modifying the structure and properties of metals and alloys. In addition to direct implantation, a variety of other ion beam techniques such as ion beam mixing, ion beam assisted deposition and plasma source ion implantation have been used increasingly in recent years. The modifications constitute compositional and microstructural changes in the surface of the metal. This leads to alterations in physical properties (transport, optical, corrosion, oxidation), as well as mechanical properties (strength, hardness, wear resistance, fatigue resistance). The compositional changes brought about by ion bombardment are classified into recoil implantation, cascade mixing, radiation-enhanced diffusion, radiation-induced segregation, Gibbsian adsorption and sputtering which combine to produce an often complicated compositional variation within the implanted layer and often, well beyond. Microstructurally, the phases present are often altered from what is expected from equilibrium thermodynamics giving rise to order-disorder transformations, metastable (crystalline, amorphous or quasicrystalline) phase formation and growth, as well as densification, grain growth, formation of a preferred texture and the formation of a high density dislocation network. All these effects need to be understood before one can determine the effect of ion bombardment on the physical and mechanical properties of metals. This paper reviews the literature in terms of the compositional and microstructural changes induced by ion bombardment, whether by direct implantation, ion beam mixing or other forms of ion irradiation. The topics are introduced as well as reviewed, making this a more pedogogical approach as opposed to one which treats only recent developments. The aim is to provide the tools needed to understand the consequent changes in physical and mechanical properties.  相似文献   

6.
Gas-phase reactions between multiply charged positive and negative protein ions are carried out in a quadrupole ion trap mass spectrometer. The ions react with one another by proton transfer and complex formation. Proton transfer products and complexes are formed via competitive processes in single ion/ion encounters. The relative contributions of proton transfer versus complex formation are dependent upon the charges of the ions as well as other characteristics of the ions yet to be clearly delineated. No fragmentation of covalent bonds of the protein reactants is observed. A model that considers the trajectories associated with ion/ion interactions appears to hold the most promise in accounting for the results. The formation of bound ion/ion orbits appears to play an important role in determining overall reaction kinetics as well as the distribution of ion/ion reaction products. Tandem mass spectrometry is used to compare protein complexes formed in the gas-phase with those formed initially in solution and subsequently liberated by electrospray; it is shown that both forms of complex dissociate similarly, but the complexes formed in the gas phase can retain a "memory" of their method of formation.  相似文献   

7.
The liquid–liquid extraction of a series of amino acid methyl esters has been carried out with functionalised calix[4]arene (5,11,17,23-tetrakis(N-methylpiperazino)-25,26,27,28-tetrahydroxycalix[4]arene) from an aqueous phase into a chloroform phase as ion pairs in the presence of picrate ion or tropaeolin 00 as counter ion in order to study the molecular recognition properties of this receptor. The active transport assisted by pH gradient of amino acids as ion pairs through liquid membrane employing the functionalised calix[4]arene as carrier has been investigated. The results showed that the receptor exhibits good extractability towards amino acids and it can also act as carrier through liquid membrane aiming to the separation of amino acids. It was highlighted that the anion nature used as counter ion, the structure of calix[4]arene, and the structure of amino acids are responsible for the experimental results obtained. High yields in both amino acids extraction and transport were obtained for picrate ion used as counter ion.  相似文献   

8.
Ion transport behaviours through cell membranes are commonly identified in biological systems, which are crucial for sustaining life for organisms. Similarly, ion transport is significant for electrochemical ion storage in rechargeable batteries, which has attracted much attention in recent years. Rapid ion transport can be well achieved by crystal channels engineering, such as creating pores or tailoring interlayer spacing down to the nanometre or even sub-nanometre scale. Furthermore, some functional channels, such as ion selective channels and stimulus-responsive channels, are developed for smart ion storage applications. In this review, the typical ion transport phenomena in the biological systems, including ion channels and pumps, are first introduced, and then ion transport mechanisms in solid and liquid crystals are comprehensively reviewed, particularly for the widely studied porous inorganic/organic hybrid crystals and ultrathin inorganic materials. Subsequently, recent progress on the ion transport properties in electrodes and electrolytes is reviewed for rechargeable batteries. Finally, current challenges in the ion transport behaviours in rechargeable batteries are analysed and some potential research approaches, such as bioinspired ultrafast ion transport structures and membranes, are proposed for future studies. It is expected that this review can give a comprehensive understanding on the ion transport mechanisms within crystals and provide some novel design concepts on promoting electrochemical ion storage capability in rechargeable batteries.  相似文献   

9.
Differences in the electron capture negative ion mass spectra of environmentally related organic compounds acquired on a VG 30-250 triple quadruple mass spectrometer and on an HP 5985B gas chromatography/mass spectrometry system were investigated with respect to the ion formation process. Neither ion source temperature nor pressure was responsible for the differences. The populations of thermal electrons in both ion sources were experimentally determined and found to be similar, suggesting that electron capturing reactions should proceed with comparable efficiencies in both ion sources. The ion extraction efficiencies of the two instruments were examined by monitoring the transmission profiles of low- and high-mass ions as a function of lens potentials. Results indicated that the HP 5985B extraction lens significantly suppressed low-mass ions. Further, theoretical evaluation of ion trajectories using SIMION suggested that on the HP 5985B, low-mass ions entered the mass analyzer as a defocused beam, but high-mass ions entered the analyzer as a well-collimated beam. On the VG 30–250, low- and high-mass ions were transmitted to the analyzer with equal efficiency by the ion extraction system.  相似文献   

10.
The effects on ion motion caused by the application of a resonance AC dipole voltage to the end-cap electrodes of the quadrupole ion trap are described. An excimer laser is used to photodissociate benzoyl ions, and its triggering is phase locked to the AC voltage to follow the motion of the ion cloud as a function of the phase angle of the AC signal. Resonantly excited ions maintain a coherent motion in the presence of He buffer gas, which dissipates energy from the ions via collisions. Maximum ion displacements, which depend upon the potential well depth (q z value), occur twice each AC cycle. Axial components of ion velocities are determined by differentiating the displacements of the distributions with respect to time. The experimental data show that these velocities are maximized when the ion cloud passes through zero axial displacement, and they compare favorably with results calculated using a simple harmonic oscillator model. Axial components of ion kinetic energies are low (<5 eV) under the chosen experimental conditions. At low values of q2 (≈ 0.2), the width of the ion distribution increases as the ion cloud approaches the center of the trap and decreases as it approaches the end-cap electrodes. This effect is created by compaction of the ion trajectories when ion velocities are decreased,  相似文献   

11.
The use of radio-frequency (RF)-only ion guides for efficient transport of ions through regions of a mass spectrometer where the background gas pressure is relatively high is widespread in present instrumentation. Whilst multiple collisions between ions and the background gas can be beneficial, for example in inducing fragmentation and/or decreasing the spread in ion energies, the resultant reduction of ion axial velocity can be detrimental in modes of operation where a rapidly changing influx of ions to the gas-filled ion guide needs to be reproduced at the exit. In general, the RF-only ion guides presently in use are based on multipole rod sets. Here we report investigations into a new mode of ion propulsion within an RF ion guide based on a stack of ring electrodes. Ion propulsion is produced by superimposing a voltage pulse on the confining RF of an electrode and then moving the pulse to an adjacent electrode and so on along the guide to provide a travelling voltage wave on which the ions can surf. Through appropriate choice of the travelling wave pulse height, velocity and gas pressure it will be shown that the stacked ring ion guide with the travelling wave is effective as a collision cell in a tandem mass spectrometer where fast mass scanning or switching is required, as an ion mobility separator at pressures around 0.2 mbar, as an ion delivery device for enhancement of duty cycle on an orthogonal acceleration time-of-flight (oa-TOF) mass analyser, and as an ion fragmentation device at higher wave velocities.  相似文献   

12.
Although Fourier transform ion cyclotron resonance mass spectrometry is a powerful tool in the qualitative observation of gas phase reactions, ion detection is on the millisecond time scale, orders of magnitude longer than typically found when using a sector instrument. Observations of short-lived species such as chemically activated adduct ions can be accomplished using selective ion excitation as a probe of intermediate lifetime. Whereas ion elimination has been shown to be effective in monitoring ion lifetimes on the microsecond time scale, problems associated with detecting ions produced with high kinetic energies limits the technique. Use of a kinetic energy orifice as an ion skimmer effectively eliminates ions near the center of the ion cell at relatively low kinetic energies. By modifying a single section cell to include a kinetic energy orifice, the lifetimes of chemically activated adduct ions have been investigated.  相似文献   

13.
Space Charge Induced Nonlinear Effects in Quadrupole Ion Traps   总被引:1,自引:0,他引:1  
A theoretical method was proposed in this work to study space charge effects in quadrupole ion traps, including ion trapping, ion motion frequency shift, and nonlinear effects on ion trajectories. The spatial distributions of ion clouds within quadrupole ion traps were first modeled for both 3D and linear ion traps. It is found that the electric field generated by space charge can be expressed as a summation of even-order fields, such as quadrupole field, octopole field, etc. Ion trajectories were then solved using the harmonic balance method. Similar to high-order field effects, space charge will result in an “ocean wave” shape nonlinear resonance curve for an ion under a dipolar excitation. However, the nonlinear resonance curve will be totally shifted to lower frequencies and bend towards ion secular frequency as ion motion amplitude increases, which is just the opposite effect of any even-order field. Based on theoretical derivations, methods to reduce space charge effects were proposed.
Figure
?  相似文献   

14.
In this article, we calculated the potential function of the surface‐electrode ion trap (SEIT) by using Green's function method, optimized trap size, obtained the coefficients of the multipoles and analyzed ion trajectories in the RF potential. The optimized SEIT not only increases its trapping well depth by a factor of about 15, but also has relatively good linearity of the field (or large quadrupole component). The current design of SEIT can work well either as the ion guide for ion transmission or as the ion trap for ion confinement. Our research can be used to calculate the potential function in the SEIT with different device parameters, understand ion motions in the traps and optimize instrument performance. The method for calculating potential function can be expanded to planar and halo ion traps. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
An ion trap mass analyzer has been attached to an organic secondary ion microprobe. A pressure differential >100 can be maintained between the ion trap and microprobe. The well-focused secondary ion beam can transit a small (2 mm) diameter tube, but gas flow from ion trap to microprobe is impeded. This pressure differential allows the microprobe to retain imaging capability. Ion trap and microprobe data systems are integrated by taking advantage of the highly reproducible periodicity of the ion trap operating in resonant ejection mode and asynchronous signal and data acquisition afforded by commercially available interface cards. Secondary ion mass spectra and images obtained indicate an approximately 10-fold improvement in sensitivity, although preliminary evidence indicates low (<1%) trapping efficiency. Image data acquisition using the ion trap for mass analysis requires at least 10 times as much time compared to using a quadrupole mass filter because the mass-selected instability mode is used for mass analysis, i.e., mass resolution in the ion trap is not continuous as it is in the quadrupole.  相似文献   

16.
《Electroanalysis》2006,18(1):7-18
Conducting polymers, i.e., electroactive conjugated polymers, are useful both as ion‐to‐electron transducers and as sensing membranes in solid‐state ion‐selective electrodes. Recent achievements over the last few years have resulted in significant improvements of the analytical performance of solid‐contact ion‐selective electrodes (solid‐contact ISEs) based on conducting polymers as ion‐to‐electron transducer combined with polymeric ion‐selective membranes. A significant amount of research has also been devoted to solid‐state ISEs based on conducting polymers as the sensing membrane. This review gives a brief summary of the progress in the area in recent years.  相似文献   

17.
The QQ mass spectrometer is shown to be applicable to ion structure determination via collision-induced dissociations of mass-selected ions. The instrument can be scanned so as to record the products of dissociation as well as those of ion—molecule association reactions. The dissociations correspond to those observed at high kinetic energy in mass-analyzed ion kinetic energy spectrometers and the association reactions show parallels with reactions seen in ion cyclotron resonance spectroscopy and in high-pressure mass spectrometry  相似文献   

18.
19.
Taking soil colloid and hydrated silica (quartz sand) as the experimental material, the comparative study has been made on the kinetics of ion diffusion and ion exchange in charged colloid and charged coarse disperse systems. The results showed that ion exchange kinetics in the two systems conform to the kinetic law of ion diffusion. Besides, through this comparative study on the kinetics of ion exchange and ion diffusion, a method has been advanced theoretically to estimate the quantity of adsorbed ion that is located in the inner of the Helmholtz layer. As far as hydrated silica is concerned , there were about 33 per cent of the total adsorbed quantity of Mg2+that were located in the inner of the Helmholtz layer under the given experimental conditions, bu tfor soil colloid the percentage was only 7.5.  相似文献   

20.
Means to allow for the application of a dipolar DC pulse to the end-cap electrodes of a three-dimensional (3-D) quadrupole ion trap for as short as a millisecond to as long as hundreds of milliseconds are described. The implementation of dipolar DC does not compromise the ability to apply AC waveforms to the end-cap electrodes at other times in the experiment. Dipolar DC provides a nonresonant means for ion acceleration by displacing ions from the center of the ion trap where they experience stronger rf electric fields, which increases the extent of micro-motion. The evolution of the product ion spectrum to higher generation products with time, as shown using protonated leucine enkephalin as a model protonated peptide, illustrates the broad-band nature of the activation. Dipolar DC activation is also shown to be effective as an ion heating approach in mimicking high amplitude short time excitation (HASTE)/pulsed Q dissociation (PQD) resonance excitation experiments that are intended to enhance the likelihood for observing low m/z products in ion trap tandem mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号