共查询到20条相似文献,搜索用时 15 毫秒
1.
A channel drop filter system that consists of two waveguides and three cavities is studied. One cavity couples with both waveguides, while the other two work as resonant mirrors to reflect the selected channel back into the system. The operation of this configuration is analyzed, using coupled mode theory. The conditions to achieve 100% in-plane channel transfer are derived. A method to suppress the side lobes of reflection and backward drop is also proposed. The direct coupling between the cavities is not required. The analysis is verified by two-dimensional finite difference time domain simulations in 2D hexagonal photonic crystals. 相似文献
2.
A. Syntjoki M. Mulot K. Vynck D. Cassagne J. Ahopelto H. Lipsanen 《Photonics and Nanostructures》2008,6(1):42-VII
We show that photonic crystals with ring-shaped holes (RPhCs) exhibit superior properties compared to conventional photonic crystals (PhCs). At low air-fill factors RPhCs can have a larger bandgap than conventional PhCs. Moreover, RPhC waveguides with both high group index and small group velocity dispersion can be designed. RPhC waveguides are also more sensitive to external refractive index changes, which is attractive for sensor applications. Finally we set up a procedure to pattern RPhCs in silicon-on-insulator. 相似文献
3.
Two-dimensionally periodic photonic crystal microcavity filters in a ridge waveguide format have been designed and fabricated. Transition mode-matching features were added to increase the optical throughput by more than a factor of two. An increase of Q-factor (more than 100%) was achieved by the addition of two further rows of photonic crystal holes to the microcavity filters. Attempts have also been made to tailor the filter response by applying design concepts used in other Bragg-grating optical filter technologies. 相似文献
4.
A wavelength-division-multiplexing system with high compactness and extremely simple structures is designed and analyzed theoretically for optical communication wavelengths. The structure consists of a self-collimation region, a coupler, a coupling section, and two arbitrarily bent periodic dielectric waveguides (PDWGs). Operation principle of the devices is based on self-collimation and directional coupling mechanism. The equal-frequency contours (EFCs) are nearly flat from 0.17–0.22 (2πc/a), thus the self-collimation region acts as a multiplexer. Operation principle of the demultiplexer is based on directional coupling in two parallel periodic dielectric waveguides. The device performances have been evaluated by the finite-difference time-domain simulations coupled with perfectly matched layer (PML) boundary conditions. 相似文献
5.
This paper presents a novel configuration of channel drop filters based on two-dimensional photonic crystal slabs in silicon-on-insulator platforms. The structure is composed of two photonic crystal line-defect waveguides as input and output ports, along with an L3 cavity with ring-shaped border holes. The effects of structural parameters and fabrication errors on resonance frequency and drop efficiency are investigated. Band structure and propagation of electromagnetic field through device are calculated by plane wave expansion and finite-difference time-domain methods. The results show that the quality factor and line-width of output signal are ~5690 and 0.27 nm, respectively, indicating that the proposed filter can be properly used in dense wavelength division multiplexing systems with 0.8 nm channel spacing. 相似文献
6.
This paper presents a novel in-plane photonic crystal channel drop filter.The device is composed of a resonant cavity sandwiched by two parallel waveguides.The cavity has two resonant modes with opposite symmetries.Tuning these two modes into degeneracy causes destructive interference in bus waveguide,which results in high forward drop efficiency at the resonant wavelength.From the result of numerical analysis by using two-dimensional finite-difference time-domain method,the channel drop filter has a drop efficiency of 96% and a Q value of over 3000,which can be used in dense wavelength division multiplexing systems. 相似文献
7.
We propose optical cross connect filters using photonic crystal ring resonators coupled waveguide crossings. We investigate the properties of this component numerically by using the finite-difference time-domain method. Our simulations reveal that the photonic crystal based cross connect filter has more than 92% normalized transmission. Extending our concept for cross connection applications, we demonstrate a 1 × 2 PC-based cross connect filter which utilizes a heterostructure. In this filter, at the resonance of each ring resonator, the normalized power transferred to the related waveguide of the two drop waveguides is found to be more than 91%. 相似文献
8.
太赫兹波技术和光子晶体技术相结合为设计太赫兹波功能器件提供了新的思路和方法.本文提出了一种基于二维光子晶体的双波长太赫兹波功分器.在光子晶体中引入由三个相互平行的单模波导形成的定向耦合型分束器和Y型结构的1×2型分束器,同时,在Y型结构的分支处分别引入两个介质柱.利用平面波展开法和定向耦合原理计算了在不同入射波频率下,耦合波导的耦合长度,并采用时域有限差分法对功分器的传输特性进行了模拟仿真分析.结果表明,在频率f1=1.0THz时,实现了端口1和端口2的能量均分输出;在频率f2=0.893THz时,通过非对称改变两个介质柱的折射率,可以实现端口3和端口4输出能量的自由分配. 相似文献
9.
10.
We present TE transmission measurements of photonic crystal waveguides with high hole radius to period ratio r/Λ = 0.388. This geometry introduces a unique low loss transmission band in addition to the traditional PhC guiding band and very sharp transmission edges for devices with a length of 50 μm or longer. Finite difference time domain and plane wave expansion simulations confirm the results and show that the sharpness of the cutoffs can be explained by the spectral shape of the guiding mode in the band diagram. 相似文献
11.
We report on the fabrication of photonic crystal waveguides in SOI that comprise an air-slot in the centre. The slot serves to confine suitably polarised optical radiation (H-polarisation) and due to its small size, provides extremely high field intensity values out with the high index material. Adding the photonic crystal environment then provides full control over the dispersive properties of this waveguide. We demonstrate the successful operation of this structure experimentally and explain its key features. 相似文献
12.
Wenyuan Rao 《Optik》2010,121(21):1934-1936
We present a design of all-optical switches based on one-dimensional photonic crystals (1D PhC) doped with nonlinear optical materials. The 1D PhC switch structure is composed of a PhC cavity sandwiched by two accessional PhC microcavities. The center PhC cavity has two resonant frequencies with nearly the same quality factors (Q), while the accessional PhC cavities have the same resonant frequency, which is equal to one of the resonant frequencies of the center cavity. The two accessional PhC cavities cause reduction of Q value in this resonant frequency and result in different Q values of two modes. We realize all-optical switch effect by selecting pump light wavelength at the low Q mode and probe light wavelength at the other mode. The theoretical simulations by using the finite difference time domain method show that the pump light intensity required to realize optical switch effect in the designed switch is 50 times smaller than that in one-dimensional photonic crystals cavity with only one resonant mode. 相似文献
13.
The performance of one-dimensional (1D) coupled cavities photonic crystal (PC) filters has been analyzed by finite-difference time-domain (FDTD) simulation. It is shown that the addition of tapered Bragg mirrors at each side of the cavities, to create near-Gaussian field profiles for the cavity modes, results in the prediction of near flat-top passband filters with high out-of-band rejection ratio and near unity transmission. The tapered structures suppress the vertical radiation loss to allow optimization of the number of mirror periods for the best filter response whilst guaranteeing high transmission. A critical coupling condition (k = 2Lout/Lin = 1) for flat-top responses in doubly coupled cavities filters is proposed in the tapered structures. An optimized filter for 100 GHz optical communication system are demonstrated with 1 dB bandwidth of 0.17 nm, roll-off of 0.6 dB/GHz, out-of-band signal rejection of 33 dB and transmission of 95%. Further improvement of roll-off and out-of-band rejection is demonstrated in a triply coupled cavities filter. 相似文献
14.
15.
We present the optical properties of a new type of photonic crystal (PC) named star-shaped PC (STAR-PC) with anomalous equi-frequency contours. Intentionally introducing low-symmetry in the primitive unit cell gives rise to progressively tilting flat contours, which are observed in the fifth band of the transverse magnetic mode. Due to the intrinsic dispersive feature of the proposed PCs, i.e. tilted self-collimation, the incident signal with different wavelengths can be successfully separated in a spatial domain without introducing any corrugations or complexities inside the structure. We show numerical investigations of wavelength selective characteristic of the proposed PC structure in both time and frequency domains. The STAR-PC approach can be considered a good candidate for the wavelength division applications in the design of compact photonic integrated circuits. For the purpose of wavelength separation implementations, the proposed structure may operate within the wavelength interval of 1484.5–1621.5 nm with a broad bandwidth of 8.82%. The corresponding inter-channel crosstalk value is as low as ?19 dB and the calculated transmission efficiency is above 97%. 相似文献
16.
Ivan S. Maksymov 《Physics letters. A》2011,375(5):918-921
We propose a hybrid resonance architecture in which a plasmonic element is coupled to a silicon-on-insulator photonic crystal nanobeam cavity operating at telecom wavelengths. It benefits from the combined characteristics of the photonic cavity and the plasmonic element, and exploits the unique properties of Fano resonances resulting from interactions between the continuum and the localized cavity states. As confirmed through 3D time-domain simulations, a strong cavity mode damping by the plasmonic element offers mechanisms of controlling a probe signal propagating in the nanobeam. It makes possible to create optical switching devices and logic gates relying on any optical nonlinear effect. 相似文献
17.
《Photonics and Nanostructures》2014,12(4):305-311
This work introduces a new class of PT-symmetry grating assisted devices for switching or modulation applications. Their operation is based on a four-wave interaction, thus marking a step forward in the development of PT-symmetry devices which currently are essentially based on two-wave interactions. A remarkable feature of the new structure is that all its properties also hold in the case of imperfect PT-symmetry operation, corresponding to the important practical case of fixed losses. 相似文献
18.
A novel monolithic integrated chaotic-optical transmitter structure is proposed in this paper. It consists of a distributed feedback laser, a semiconductor optical amplifier, a passive waveguide, and a photonic crystal waveguide. The length of external cavity is shorten to 1.125 mm by the slow light effect in photonic crystal waveguide. The performance of the integrated chaotic-optical transmitter is simulated. A series of dynamic states transiting from steady state, period state, and finally to chaotic laser is obtained. The size and power consumption of the chaotic-optical transmitter are both reduced by introduction of photonic crystal waveguide. 相似文献
19.
采用平面波展开法分别模拟了空气背景下由介质圆柱和方柱构造的二维Archimedes(4,82)复式晶格光子晶体的能带结构,讨论了介质柱形状、折射率、填充比和旋转对称性等因素对完全光子禁带的影响.研究发现,当折射率在2.60到5.40之间时,介质圆柱和方柱构造的二维Archimedes(4,82)复式晶格光子晶体都出现了完全光子禁带.随着折射率的增大,最大完全禁带宽度并非随之增大而是存在峰值,介质圆柱型晶格在折射率为2.80时出现峰值;介质方柱型晶格在折射率为2.80和4.40两处出现峰值,且旋转介质方柱能够明显增大禁带宽度,同时存在最佳旋转角度.分析结果表明,在最大完全禁带处,折射率、填充比以及旋转角度等因素的变化对禁带特性的影响很小. 相似文献
20.
In this work we present a heterostructure All Optical Flip-Flop configuration based on all optical switching with Kerr nonlinear photonic crystal. In this square-hexagonal structure, we propose three different schemes for the cavities in order to show the trade-off between switching time and triggering power. Loss in the system is reasonably low because of the perfect band gap matching at bending points where two lattices join. The proposed RS-Flip Flop has exceptional features, which make it one of the well optimized and most practical structures to be used in the all optical integrated circuits. The novel design has a fast switching action (on the order of a few picoseconds), and low input power (on the order of 100 mW). Furthermore, high contrast of the output signals for ON and OFF states, can help the easy detection or its coupling to the other devices. The structure is fascinatingly uncomplicated, which results in ultra small dimensions which make it suitable to be placed in an all optical integrated circuit. Besides, we provide a profound analytical view on the functioning of the system, as analyzed by the finite difference time domain (FDTD) method. 相似文献