首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conduction switching, i.e., a sharp change in the conduction from a lower-conductance state to a higher-conductance state or vice versa in aluminum nitride thin films embedded with Al nanocrystals (nc–Al) has been observed in the ramped-voltage and ramped-current current–voltage (IV) measurements and the time-domain current measurement as well. Each state is well defined and its IV characteristic follows a power law. It is observed that the conductance decreases (or increases) with charging (or discharging) in the nc–Al. It is shown that the conduction switching is due to the charging and discharging in the nc–Al at certain strategic sites. With the connecting (or breaking) of some conductive tunneling paths formed by the uncharged nc–Al due to the discharging (or charging) in the nc–Al at the strategic sites, a conduction switching occurs.  相似文献   

2.
An organic/inorganic heterojunction p-VOPc/n-Si was fabricated and its electrical properties were investigated. Temperature-dependent dark current–voltage (IV) characteristics of the heterojunction exhibited rectification behaviour with a rectification ratio of 405 at ±1 V and room temperature. The current–voltage characteristics of the cell showed ohmic conduction at low voltages followed by a space charge-limited current (SCLC) conduction dominated by an exponential trap distribution at higher voltages. At room temperature, the series and shunt resistances were found to be approximately 1.4 and 100 kΩ, respectively. Diode ideality factor n was found to be 3.2 at room temperature and dropped to 1.9 at 363 K. Room temperature mobility of vanadyl phthalocyanine (VOPc) was extracted from the IV characteristics in the SCLC region and was found approximately 15.5 × 10−3 cm2 V−1 s−1. The effective barrier height, ФB, was estimated as 0.77 eV. The effect of temperature, on various heterojunction parameters was recorded under dark conditions and at temperatures ranging from 300 to 363 K.  相似文献   

3.
The contact potential between a single ZnO nanowire and Ti/Au contacts was estimated to be ∼30 meV by considering the Arrhenious plot of the two-probe resistance, the thermionic emission conduction, and the Fowler–Nordheim tunneling model. The net voltages applied to the contacts were calculated by subtracting the four-probe voltages from the two-probe voltages at the same currents. The activation energy of the four-probe resistance was about 2.4 mV which was 1/11th of that of the two-probe resistance. The Fowler–Nordheim plot clearly showed the crossover of the conduction mechanism from thermionic emission to tunneling regime as lowering the temperatures below T<100 K.  相似文献   

4.
The resultant local Seebeck coefficient α R (=α Sα T) at the interface of a thermoelement has not yet been measured, although it is an important factor governing the thermoelectric efficiency, where α S is the local Seebeck coefficient and α T is the one caused by the Thomson effect. It is shown in this paper that α S, α T, and α R of the p- and n-type Cu/Bi–Te/Cu composites are obtained analytically and experimentally on the assumption that the local temperature of the composite on which the temperature difference ΔT is imposed varies linearly with changes in position along the composite. They were indeed estimated as a function of position from the local experimental data of RIT, and V generated by applying an additional current of ±I to the composite, where R is the electrical resistance and ΔI is a current generated by the composite. As a result, it was found that the absolute values of α S at the hot interface of the p- and n-type composites are approximately 1.5 and 1.4 times higher than their lowest values in the middle region of the composite, respectively, while those of α T are less than 8% of α S all over the composite and are so small that the relation α Rα S can be held. We thus succeeded in measuring α R at the interfaces of the composite.  相似文献   

5.
Large-scale room-temperature liquid-phase directed assembly of highly organized single-walled carbon nanotubes (SWNT) over large areas is demonstrated. The presented process utilizes lithographically patterned template to guide the fluidic self-assembly of SWNTs on a silicon-dioxide substrate. The width of these highly organized SWNT structures are in the micron range while their heights are in orders of nanometers. Room temperature electrical IV characterization of these fabricated high coverage SWNT wires show linear ohmic behavior. The resistivity of these assembled SWNT network is in the order of 10−6 Ω m demonstrating their metallic characteristics during conductance. Scaling of the assembly processes on a wafer level with high yield is demonstrated. Our developed assembly process is compatible with complimentary metal oxide semiconductor (CMOS) processes and provides a simple and flexible way of building SWNT nanotube-based electronics in a large scale.  相似文献   

6.
We demonstrate n-type doping of pentacene with the powerful reducing molecule decamethylcobaltocene (CoCp2*). Characterization of pentacene films deposited in a background pressure of CoCp2* by X-ray photoemission spectroscopy and Rutherford backscattering confirm that the concentration of incorporated donor molecules can be controlled to a level as high as 1%. Ultraviolet photoemission spectroscopy show Fermi level (E F) shifts toward unoccupied pentacene states, indicative of an increase in the electron concentration. A 1% donor incorporation level brings E F to 0.6 eV below the pentacene lowest unoccupied molecular orbital. The corresponding electron density of ∼1018 cm−3 is confirmed by capacitance–voltage measurements on a metal–pentacene–oxide–silicon structure. The demonstration of n-doping suggests applications of CoCp2* to pentacene contacts or channel regions of pentacene OTFTs.  相似文献   

7.
Current-voltage (I–V) characteristics are studied in the intrinsic Josephson junctions of Bi2Sr2CaCu2Oy single crystals. In order to examine the influence of self-heating, a current pulse (∼0.2 μsec) is applied to the mesas of 40 μmϕx0.15 μm patterned on the crystal. As a consequence, in contrast to small characteristic voltageV c in the continuous-current measurement, theV c data is found comparable to the BCS value. Moreover, theI–V curve is nearly ohmic forl>l c , implying that the nonlinearity under the continuous current is due to heating. The quasiparticle resistance forT<T c is also presented by an estimate from the characteristic voltage.  相似文献   

8.
A dynamic method for quantifying the amount and mechanism of trapping in organic field effect transistors (OFETs) is proposed. It exploits transfer characteristics acquired upon application of a triangular waveform gate sweep V G. The analysis of the transfer characteristics at the turning point V G=−V max between forward and backward gate sweeps, viz. around the maximum gate voltage V max applied, provides a differential slope Δm which depends exclusively on trapping. Upon a systematic change of V max it is possible to extract the initial threshold voltage, equivalent to one of the observables of conventional stress measurements, and assess the mechanism of trapping via the functional dependence on the current. The analysis of the differential logarithmic derivative at the turning point yields the parameters of trapping, as the exponent β and the time scale of trapping τ. In the case of an ultra-thin pentacene OFET we extract β=1 and τ=102–103 s, in agreement with an exponential distribution of traps. The analysis of the hysteresis parameter Δm is completely general and explores time scales much shorter than those involved in bias stress measurements, thus avoiding irreversible damage to the device.  相似文献   

9.
We report an experimental investigation of the non-steady-state photoelectromotive force in nanostructured GaN within porous glass and polypyrrole within chrysotile asbestos. The samples are illuminated by an oscillating interference pattern created by two coherent light beams and the alternating current is detected as a response of the material. Dependences of the signal amplitude versus temporal and spatial frequencies, light intensity, and temperature are studied for two wavelengths λ=442 and 532 nm. The conductivity of the GaN composite is measured: σ=(1.1–1.6)×10−10 Ω−1 cm−1 (λ=442 nm, I 0=0.045–0.19 W/cm2, T=293 K) and σ=(3.5–4.6)×10−10 Ω−1 cm−1 (λ=532 nm, I 0=2.3 W/cm2, T=249–388 K). The diffusion length of photocarriers in polypyrrole nanowires is also estimated: L D=0.18 μm.  相似文献   

10.
In a hydrodynamic model, we have studied J/ψ production in Au+Au/Cu+Cu collisions at RHIC energy, GeV. At the initial time, J/ψ’s are randomly distributed in the fluid. As the fluid evolves in time, the free streaming J/ψ’s are dissolved if the local fluid temperature exceeds a threshold temperature T J/ψ . Sequential melting of charmonium states (χ c , ψ and J/ψ), with melting temperatures , T J/ψ ≈2T c and feed-down fraction F≈0.3, explains the PHENIX data on the centrality dependence of J/ψ suppression in Au+Au collisions. J/ψ p T spectra and the nuclear modification factor in Au+Au collisions are also well explained in the model. The model however overpredicts the centrality dependence of J/ψ suppression in Cu+Cu collisions by 20–30%. The J/ψ p T spectra are underpredicted by 20–30%. The model predicts that in central Pb+Pb collisions at LHC energy,  GeV, J/ψ’s are suppressed by a factor of ∼10. The model predicted a J/ψ p T distribution in Pb+Pb collisions at LHC is similar to that in Au+Au collisions at RHIC.  相似文献   

11.
We study the effect of separate chemical and kinetic freeze-outs to the ideal hydrodynamical flow in Au + Au collisions at RHIC ( energy). Unlike earlier studies we explore how these effects can be counteracted by changes in the initial state of the hydrodynamical evolution. We conclude that the reproduction of pion, proton and antiproton yields necessitates a chemical freeze-out temperature of T ≈ 150MeV instead of T = 160–170 MeV motivated by thermal models. Contrary to previous reports, this lower temperature makes it possible to reproduce the p T spectra of hadrons if one assumes very small initial time, τ 0 = 0.2 fm/c. However, the p T differential elliptic flow, v 2(p T) remains badly reproduced. This points to the need to include dissipative effects (viscosity) or some other refinement to the model.  相似文献   

12.
Organic thin-film transistors (OTFTs) with top- and bottom-contact configurations were fabricated using silver nano-inks printed by laser forward transfer for the gate and source/drain electrodes with pentacene and poly-4-vinylphenol as the organic semiconductor and dielectric layers, respectively. The volume of the laser-printed Ag pixels was typically in the subpicoliter (0.2–0.4 pl) range. The top-contact OTFTs resulted in lower contact resistance compared to those obtained from the bottom-contact OTFTs, and showed improved overall device performance. The top-contact OTFTs exhibited field-effect mobilities of ∼0.16 cm2 V−1 s−1 and on/off current ratios of ∼105.  相似文献   

13.
The nonlinear I-V characteristic (V(I)) of YBa2Cu3O7−x single crystal was investigated near the transition from the resistive to the superconducting state in the absence of a magnetic field. A modulation Fourier analysis at temperature T* (the maximum of the amplitudes of the higher (n>1) harmonics of the response voltage) was used to determine an analytic dependence V(I) which accurately describes the experimental results (direct measurements and harmonics) in the range of currents I<30 mA (j<310 A/cm2). It is shown that at T* the power approximation of the I-V characteristic V∼I 3 is only found in the low current density limit (jj 0=140 A/cm2). The results are interpreted in terms of the Kosterlitz-Thouless (KT) transition model. It is established that T* corresponds to the temperature of the KT transition T KT, which means that T KT can be determined directly. The deviation of V(I) from a power dependence is caused by the nonlogarithmic variation of the vortex interaction energy as a function of the distance between them. Fiz. Tverd. Tela (St. Petersburg) 40, 202–204 (February 1998)  相似文献   

14.
The presented results are the first measurements at RHIC for direct γ-charged hadron azimuthal correlations in heavy ion collisions. We use these correlations to study the color charge density of the medium through the medium-induced modification of high-p T parton fragmentation. Azimuthal correlations of direct photons at high transverse energy (8<p T <16 GeV) with away-side charged hadrons of transverse momentum (3<p T <6 GeV/c) have been measured over a broad range of centrality for Au+Au collisions and p+p collisions at  GeV in the STAR experiment. A transverse shower shape analysis in the STAR Barrel Electromagnetic Calorimeter Shower Maximum Detector is used to discriminate between the direct photons and photons from the decays of high p T π 0. The per-trigger away-side yield of direct γ is smaller than from π 0 trigger at the same centrality class. Within the current uncertainty the I CP of direct γ and π 0 are similar.  相似文献   

15.
The magnetotransport and magnetoresistive (MR) properties of manganese-based La0.67Ca0.33MnO3 perovskite with different grain sizes are reported. The electrical resistivity was measured as a function of temperature in magnetic fields of 0.5 and 1 T. The insulator–metal transition temperature, T IM, shifted to a higher temperature with the application of the magnetic field. In zero field, T IM is almost constant (∼271 K) for all samples except for the sample with the largest grain size, where T IM=265 K. The temperature dependence of resistivity was fitted with several equations in the metallic (ferromagnetic) region and the insulating (paramagnetic) region. The density of states at the Fermi level, N(E F), and the activation energy of electron hopping were estimated by fitting the resistivity versus temperature curves. The ρT 2 curves are nearly linear in the metallic regime, but the ρT 2.5 curves exhibit a deviation from linearity. The variable range hopping model and small polaron hopping model fit the data well in the high-temperature region, indicating the existence of the Jahn–Teller distortion that localizes the charge carriers. MR was found to increase with an increase in the magnetic field, an effect which is attributed to the intergrain spin tunneling effect.  相似文献   

16.
The prime motivation for developing the proposed model of AlGaN/GaN microwave power device is to demonstrate its inherent ability to operate at much higher temperature. An investigation of temperature model of a 1 μm gate AlGaN/GaN enhancement mode n-type modulation-doped field effect transistor (MODFET) is presented. An analytical temperature model based on modified charge control equations is developed. The proposed model handles higher voltages and show stable operation at higher temperatures. The investigated temperature range is from 100 °K–600 °K. The critical parameters of the proposed device are the maximum drain current (IDmax), the threshold voltage (Vth), the peak dc trans-conductance (gm), and unity current gain cut-off frequency (fT). The calculated values of fT (10–70 GHz) at elevated temperature suggest that the operation of the proposed device has sufficiently high current handling capacity. The temperature effect on saturation current, cutoff frequency, and trans-conductance behavior predict the device behavior at elevated temperatures. The analysis and simulation results on the transport characteristics of the MODFET structure is compared with the previously measured experimental data at room temperature. The calculated critical parameters suggest that the proposed device could survive in extreme environments.  相似文献   

17.
Electron-beam diagnostics are used to study the radiation-induced conduction of supershallow p +-n silicon junctions obtained by nonequilibrium boron diffusion. Current-voltage (IV) characteristics of radiation-induced conduction of a both forward-and reverse-biased p +-n junction are demonstrated for the first time, which has been made possible by the presence of self-organized transverse quantum wells inside a supershallow p + diffusion profile. The variation of the dark-current IV characteristics with electron irradiation dose shows that formation of self-organized longitudinal quantum wells inside supershallow p + diffusion profiles favors an increase of the breakdown voltage in p +-n silicon junctions. Fiz. Tverd. Tela (St. Petersburg) 41, 1871–1874 (October 1999)  相似文献   

18.
The effect of a magnetic field H⊥(ab) on the transverse current-voltage characteristics (IVCs) of the mixed state of a single crystal of the layered superconductor Bi2Sr2CaCu2Oy (BSCCO) is investigated. It is established that in a wide range of temperatures and fields above the irreversibility line the initial part of the IVC is described by the law VI γ with γ≃1. As the current increases further, this law is replaced by a section where V∝exp(I). It is established that the multivalued, multibranch characteristics, interpreted as a manifestation of an internal Josephson effect, do not change appreciably when the crystal passes into a state with nonzero linear resistance. The character of the dependence of the characteristic switching current on the first resistive branch, I J (H,T), is determined. Pis’ma Zh. éksp. Teor. Fiz. 70, No. 8, 543–548 (25 October 1999)  相似文献   

19.
The results of the experiments on the formation of a plasma emitter with small spatial dimensions for pulsed radiography in the soft X-ray spectral range are presented. Emitting hot plasma was formed as a result of compression of the plasma jet by a current pulse with amplitude I m = 215 kA and rise time T fr = 200 ns. For the jet formation, we used a plasma gun based on the arc discharge (I m = 8.5 kA and T fr = 6 μs) initiated by breakdown over the surface of a dielectric in vacuum. The experiments were carried out with aluminum, tin, copper, and iron plasma jets. A single emitter, i.e., point Z-pinch (PZ-pinch), was formed when an interelectrode gap of a high current generator of 1.3–1.5 mm was used. The smallest spatial dimensions of the emitting region were obtained with the use of aluminum and tin. For a tin jet, the diameter of the emitting region was 7 ± 2 μm and its height was 17 ± 2 μm. The emission pulse duration at half-height was 2–3 ns. The total emission yield per pulse in the spectral range 1.56–1.90 keV was 30–50 mJ for the aluminum pinch and 10–30 mJ for the tin pinch. The developed method makes it possible to carry out radiographic examination of microobjects (including biological ones) 1–1000 μm in thickness, with spatial (10–20 μm) and time (2–3 ns) resolution.  相似文献   

20.
Organic molecular beam deposition is studied systematically at thermal and hyperthermal regimes aiming at investigating the role of molecular kinetic energy on the growth mechanism of pentacene submonolayers on SiO x /Si. We show that the kinetic energy of the impinging molecule (E k ) plays a crucial role in determining island structure and shape, distribution of island sizes, the crystalline quality of the first monolayer, and even the growth mode of subsequent layers. With increasing E k , the island structure changes from fractal to nonfractal, the shape becomes more anisotropic and the island size more uniform, pointing to correlated island growth. Moreover, while 3D island growth is observed for thermal organic molecular beam deposition, supersonic molecular beam deposition gives rise to layer-by-layer growth, at least for the first two layers. When E k ≥5.0 eV, the first monolayer is composed of large single crystalline domains which can extend over up to 10 μm, inferred from comparing atomic force micrographs of height and net transverse shear force. In these growth conditions both the high surface diffusivity and energy redistribution play a major role. We propose a mechanism where the energy dissipation occurring during the molecule–surface collision leads to the reorientation of whole islands during island coalescence, resulting in the elimination of grain boundaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号