首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S‐nitrosothiols (RSNOs) are composed of nitric oxide (NO) bound to the sulfhydryl group of amino acids of peptides or proteins. There is a great interest for their quantitation in biological fluids as they have a crucial impact on physiological and pathophysiological events. Most analytical methodologies for quantitation of RSNOs are based on their decomposition followed by the detection of the released NO. In order to obtain the optimal sensitivity for each detection method, the total decomposition of RSNOs is highly desired. The decomposition of RSNOs can be obtained by using catalytically active metal ions, such as Cu+, obtained from CuSO4 in presence of a reducing agent such as glutathione (GSH) that is naturally present in biological environment. In this work, we have re‐investigated the decomposition of S‐nitrosoglutathione (GSNO) which is the most abundant in vivo low molecular weight RSNO, with a special emphasis on the effect of CuSO4, GSH, and GSNO concentrations and of their ratio. To this aim, GSNO decomposition optimization was performed by both indirect (Griess assay) and direct (real time electrochemical detection of NO at NO‐microsensor) quantitation methods. Our results show that the ratio between CuSO4, GSH and GSNO should be adjusted to tune the highest decomposition rate of GSNO and the most efficient electrochemical detection of released NO; also it shows the deleterious effect of very high GSH concentration on the detection of GSNO.  相似文献   

2.
Nitric oxide (NO) is one of the simplest odd electron species. Furthermore, it is relatively hydrophobic, which is consistent with its role as a diffusible intracellular messenger or as an immune effector. NO is generated in biological systems and plays important roles as a regulatory molecule. The main problem in NO analysis is its extreme reactivity; in aerated water solution it is transformed into nitrite and nitrate, inactive biological forms. Moreover, it may lose an electron forming the NO+ ion, involved in the synthesis of nitrosothiols (RSNOs). The main problems encountered in the analytical determination of free NO and of RSNOs in biological systems are the low stability and the very low concentration of these compounds. The determination of nitrates and nitrites may also be difficult when their concentration is in the nmolar range. We describe an electrochemical assay for the determination in the same sample of free NO and of its derivatives in nmolar range. Owing to its high sensitivity, the procedure could also be applied to environmental analyses  相似文献   

3.
Thermal or photolytic reactions of bioactive S‐nitrosothiols and related thiols in the presence of radical generators in deaerated DMSO or aqueous solutions under argon or saturated with nitric oxide (NO) produced nitroxides and an oxyaminyl radical, which were well characterized by EPR spectra. Nitroxides containing a thiyl substituent were obtained. Possible mechanisms are proposed. Bioactive S‐nitrosothiols such as S‐nitrosoglutathione, S‐nitroso‐N‐acetylpenicillamine and related thiols such as glutathione and N‐acetylpenicillamine were used for the investigation. Radical generators utilized as transient radical sources were 2,2‐azobisisobutyronitrile, 2,2‐azobis(2‐methylpropionamidine) dihydrochloride, tert‐butyl peroxide and benzoyl peroxide. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
A new approach for preparing potentially more blood-compatible nitric oxide (NO)-generating polymeric materials is described. The method involves creating polymeric films that have catalytic sites within (lipophilic copper(II) complex) that are capable of converting endogenous S-nitrosothiols present in blood (S-nitrosoglutathione (GSNO), S-nitrosocysteine (CysNO), etc.) to NO. The catalytic NO generation reaction involves the initial reduction of Cu(II) to Cu(I) within the complex by appropriate reducing agents (e.g., thiolates or ascorbate), followed by the reduction of S-nitrosothiols to NO by the Cu(I) complex at the polymer/solution interface. The NO fluxes observed when PVC or polyurethane films containing the copper(II) complex are placed in solutions containing physiological levels of nitrosothiols (muM levels) reach ca. 8 x 10-10 mol cm-2 min-1, greater than that produced by normal endothelial cells that line all healthy blood vessels. It is thus anticipated that this spontaneous catalytic generation of NO from endogenous nitrosothiols will render such polymeric materials more thromboresistant when in contact with blood in vivo.  相似文献   

5.
Khin C  Lim MD  Tsuge K  Iretskii A  Wu G  Ford PC 《Inorganic chemistry》2007,46(22):9323-9331
The reaction of the fluorescent macrocyclic ligand 1,8-bis(anthracen-9-ylmethyl)-1,4,8,11-tetraazacyclotetradecane with copper(II) salts leads to formation of the Cu(DAC)2+ cation (I), which is not luminescent. However, when aqueous methanol solutions of I are allowed to react with NO, fluorescence again develops, owing to the formation of the strongly luminescent N-nitrosated ligand DAC-NO (II), which is released from the copper center. This reaction is relatively slow in neutral media, and kinetics studies show it to be first order in the concentrations of NO and base. In these contexts, it is proposed that the amine nitrosation occurs via NO attack at a coordinated amine that has been deprotonated and that this step occurs with concomitant reduction of the Cu(II) to Cu(I). DFT computations at the BP/LACVP* level support these mechanistic arguments. It is further proposed that such nitrosation of electron-rich ligands coordinated to redox-active metal centers is a mechanistic pathway that may find greater generality in the biochemical formation of nitrosothiols and nitrosoamines.  相似文献   

6.
The role of hemoglobin (Hb) in transmitting the vasodilatory property of NO throughout the vascular system is of much current interest. NO exchange between Hb and low-molecular-weight nitrosothiols such as S-nitrosoglutathione (GSNO) has been speculated and reported in vitro. Previously, we reported that NO delivery from GSNO to Cysbeta93 of human oxyHb is prevented in the presence of the Cu chelators, neocuproine, and DTPA.(1) In the present work, 5 mM solutions of commercial human Hb were found by ICP-MS to contain approximately 20 microM Cu and Zn, suggesting the presence of Cu,Zn-superoxide dismutase (CuZnSOD), which was confirmed by Western blotting. SOD activity measurements were consistent with the presence of approximately 20 microM CuZnSOD monomer in 5 mM Hb solutions, which is the physiological concentrations of these proteins in the red blood cell. Incubation of 3.75 mM oxyHb (15 mM heme; 7.5 mM Cysbeta93) with 3.75 or 7.5 mM GSNO gave rise to 50% or 100% S-nitrosation, respectively, of Cysbeta93 as monitored by FTIR nu(SH) absorption, whereas excess GSNO over Cysbeta93 converted oxyHb to metHb due to the reaction, oxyHb + NO<==>metHb + NO(3)(-). Removal of CuZnSOD by anion-exchange chromatography yielded an oxyHb sample that was unreactive toward GSNO, and replacement with bovine CuZnSOD restored reactivity. Addition of 1 microM GSNO (Cysbeta93/GSNO = 1) to solutions diluted 10(4)-fold from physiological concentrations of oxyHb and CuZnSOD resulted largely in metHb formation. Thus, this work reports the following key findings: CuZnSOD is an efficient catalyst of NO transfer between GSNO and Cysbeta93 of oxyHb; metHb is not detected in oxyHb/GSNO incubates containing close to the physiological concentration (5 mM) of Hb and CuZnSOD when the Cysbeta93/GSNO molar ratio is 0.5 to 1.0, but metHb is detected when the total Hb concentration is low micromolar. These results suggest that erythrocyte CuZnSOD may play a critical role in preserving the biological activity of NO by targeting it from GSNO to Cysbeta93 of oxyHb rather than to its oxyheme.  相似文献   

7.
《Electroanalysis》2006,18(21):2043-2048
A new biosensor is described for the detection of S‐nitrosothiols (RSNOs) based on their decomposition by immobilized glutathione peroxidase (GPx), an enzyme containing selenocysteine residue that catalytically produces nitric oxide (NO) from RSNOs. The enzyme is entrapped at the distal tip of a planar amperometric NO sensor. The new biosensor shows good sensitivity, linearity, reversibility, and response times towards various RSNO species in PBS buffer, pH 7.4 . In most cases, the response time is less than 5 min, and the response is linear up to 6 μM of the tested RSNO species. The lowest detection limit is obtained for S‐nitrosocysteine (CysNO), at approx. 0.2 μM. The biosensor's sensitivity is not affected by the addition of EDTA as a chelating agent; an advantage over other potential catalytic enzymes that contain copper ion centers, such as CuZn‐superoxide dismutase and xanthine oxidase. However, lifetime of the new sensor is limited, with sensitivity decrease of 50% after two days of use. Nonetheless, the new amperometric GPx based RSNO sensor could prove useful for detecting relative RSNO levels in biological samples, including whole blood.  相似文献   

8.
Nitric oxide (NO) is a gaseous diatomic radical that is involved in a wide range of physiological and pathological functions in biology. Conceptually, the biochemistry of NO can be separated into three stages: generation (stage 1), translocation (stage 2), and action (stage 3). In stage 1 the oxygenase domain of NO synthase converts L-arginine to L-citrulline and NO (g). Owing to its short-lived nature, this molecule is converted into a different nitrogen oxide such as NO(2), an organonitrosyl such as a nitrosothiol, or a metal nitrosyl such as a heme-nitrosyl, for transportation in stage 2. Each of these derivatives features unique physical characteristics, chemical reactivity, and biological activity. Upon delivery in stage 3, NO exerts its physiological or pathological function by reaction with biomolecules containing redox-active metals or other residues.  相似文献   

9.
The rate of S-nitrosocysteine decomposition in a pH range between 0.7 < pH < 13 exhibits first- and second-order dependence on total cysteine concentration. The second-order term is only observed for pH values between 6.9 < pH < 12. Both first- and second-order terms show a complex dependence on the acidity of the medium. They increase with increasing pH, reaching a maximum value around pH = 8 and then decrease with further increase in pH. An analysis of the reaction products reveals the absence of nitrite ion and ammonia. No evidence of catalysis by copper ions is observed. These results suggest the existence of a new decomposition pathway for S-nitrosocysteine, which proceeds via an intramolecular nitroso group transfer producing a primary N-nitrosamine that decomposes rapidly to give the corresponding diazonium salt. The nitroso group transfer reaction occurs intermolecularly for the decomposition pathway exhibiting a quadratic dependence on cysteine concentration. Both nitroso group transfer pathways are subject to acid catalysis by cysteine. Kinetic results indicate that the extent of S...NO bond cleavage in the transition state is ahead of protonation of the AH...S sulfur atom. The results obtained show the existence of a new decomposition pathway for the S-nitrosocysteine where NO is not released, and hence, it has a significant biological impact due to the potential use of nitrosothiols as NO donors.  相似文献   

10.
The reductive nitrosylation (Fe(III)(P) + 2NO + H(2)O = Fe(II)(P)(NO) + NO(2)(-) + 2H(+)) of the ferriheme model Fe(III)(TPPS) (TPPS = tetra(4-sulfonatophenyl)porphyrinato) has been investigated in moderately acidic solution. In the absence of added or adventitious nitrite, this reaction displays general base catalysis with several buffers in aqueous solutions. It was also found that the nitrite ion, NO(2)(-), is a catalyst for this reaction. Similar nitrite catalysis was demonstrated for another ferriheme model system Fe(III)(TMPy) (TMPy = meso-tetrakis(N-methyl-4-pyridyl)porphyrinato), and for ferriheme proteins met-hemoglobin (metHb) and met-myoglobin (metMb) in aqueous buffer solutions. Thus, it appears that such catalysis is a general mechanistic route to the reductive nitrosylation products. Two nitrite catalysis mechanisms are proposed. In the first, NO(2)(-) is visualized as operating via nucleophilic addition to the Fe(III)-coordinated NO in a manner similar to the reactions proposed for Fe(III) reduction promoted by other nucleophiles. This would give a labile N(2)O(3) ligand that hydrolyzes to nitrous acid, regenerating the original nitrite. The other proposal is that Fe(III) reduction is effected by direct outer-sphere electron transfer from NO(2)(-) to Fe(III)(P)(NO) to give nitrogen dioxide plus the ferrous nitrosyl complex Fe(II)(P)(NO). The NO(2) thus generated would be trapped by excess NO to give N(2)O(3) and, subsequently, nitrite. It is found that the nitrite catalysis rates are markedly sensitive to the respective Fe(III)(P)(NO) reduction potentials, which is consistent with the behavior expected for an outer-sphere electron-transfer mechanism. Nitrite is the product of NO autoxidation in aqueous solution and is a ubiquitous impurity in experiments where aqueous NO is added to an aerobic system to study biological effects. The present results demonstrate that such an impurity should not be assumed to be innocuous, especially in the context of recent reports that endogenous nitrite may play physiological roles relevant to the interactions of NO and ferriheme proteins.  相似文献   

11.
Thiols can be readily converted to their corresponding nitrosothiols with a combination of oxalic acid and sodium nitrite in t-butanol at room temperature (26-30°C). The reaction mixture could be solidified with decreasing its temperature to, 15°C and was stored for several days without any destruction of the nitrosothiols.  相似文献   

12.
Kitamura Y  Ogawa H  Oka K 《Talanta》2003,61(5):717-724
Nitric oxide (NO) is an important mediator responsible for numerous physiological phenomena. Transient levels of NO in biological systems usually range from nanomolar to micromolar concentrations, with a rapid return to basal levels normally seen following these increases. Because NO can diffuse only over a local area in limited time due to such low levels of production and due to its short life-time prior to degradation, high spatial and temporal resolutions are required for direct and continuous NO measurement if the physiological role of NO is to be investigated in any system. For such purposes, analytical methods based on bio-imaging and electrochemical techniques for the measurement of NO are useful. In this paper, we describe the successful application of these methods to a number of biological systems. Specifically, complementary application of these methods demonstrate that it is possible to detect real-time NO production from nervous tissue with high spatial and temporal resolutions.  相似文献   

13.
The development and preparation of five series of tertiary thiols and nitrosothiols as nitric oxide releasing molecules functionalized with acid, alcohol, or amine groups for future conjugation are reported.  相似文献   

14.
Tu H  Xue J  Cao X  Zhang W  Jin L 《The Analyst》2000,125(1):163-167
A novel electrochemical microsensor for the determination of NO based on an electropolymerized film of tetraaminophthalocyaninecopper [Cu(TAPc)] was prepared. Its response to NO and its application to the study of an NO donor (S-nitrosoglutathione; GSNO) are also described. The microsensor exhibited an electrocatalytic effect on NO oxidation and showed a low detection limit, high sensitivity and selectivity for NO determination. The oxidation current (measured by differential pulse amperometry) was linear for NO concentrations ranging from 6.2 x 10(-9) to 3.0 x 10(-5) mol L-1 with a calculated detection limit of 4.0 x 10(-9) mol L-1 (S/N = 3) and a linear coefficient of 0.9984. Some endogenous electroactive substances in biological tissues, such as dopamine, 5-hydroxytryptamine and nitrite, at concentrations higher than those in biological systems did not interfere with NO determination. The sensor shows promise for the possible in vivo determination of NO. Using the microsensor, the NO release from the NO donor (GSNO) was successfully monitored. This work sets a foundation for the study of the pharmacology and the biological effects in vivo of S-nitrosothiols.  相似文献   

15.
一氧化氮荧光分子探针   总被引:1,自引:0,他引:1  
张灯青  赵圣印  刘海雄 《化学进展》2008,20(9):1396-1405
一氧化氮(NO)在生物体中扮演重要的角色,对其选择性识别引起了人们极大的兴趣。本文综述了两类NO荧光分子探针的研究进展,即含金属离子的NO荧光分子探针:如Co(Ⅱ)、Fe(Ⅱ)、 Ru(Ⅱ)、Rh(Ⅱ)和Cu(Ⅱ)配合物作为荧光打开的NO分子探针;邻苯二胺类荧光分子探针:如2,3-二氨基萘(DAN)、二氨基荧光素衍生物(DAFs)、二氨基罗丹明衍生物(DARs)、硼二吡咯甲基衍生物(BODIPY)和三碳菁衍生物(DAC)等。  相似文献   

16.
The role of nitric oxide (NO) as a biological signaling molecule is well established. NO is produced by the nitric oxide synthases (NOSs, EC 1.14.13.39), a class of heme proteins capable of converting l-arginine to NO and l-citrulline. Despite the large body of knowledge associated with the NOSs, mechanistic details relating to the unique oxidative chemistry performed by these enzymes remain to be fully elucidated. Furthermore, a number of disease states are associated with either the over- or underproduction of NO, making the NOS pathway an attractive target for the development of therapeutics. For these reasons, molecular tools capable of providing mechanistic insights into the production of NO and/or the inhibition of the NOSs remain of interest. We report here the stereospecific synthesis and testing of a number of new l-arginine analogues bearing a minimal substitution, methylation at position 5 of the amino acid side chain (such analogues have not been previously reported). The synthetic approach employed a modified photolysis procedure whereby irradiation of the appropriate diacylperoxide precursors at 254 nm gave access to the required unnatural amino acids in good yields. A heme domain construct of the inducible NOS isoform (iNOSheme) was used to assess the binding of each compound to the enzyme active site. The compounds were also investigated as either inhibitors of, or alternate substrates for, the inducible NOS isoform. The results obtained provide new insight into the steric and stereochemical tolerance of the enzyme active site. These findings also further support the role of a conserved active site water molecule previously proposed to be necessary for NOS catalysis.  相似文献   

17.
Ye X  Rubakhin SS  Sweedler JV 《The Analyst》2008,133(4):423-433
Nitric oxide (NO) is endogenously generated by nitric oxide synthase (NOS) enzymes and is involved in a surprisingly wide range of biological functions. As efforts are made to elucidate the regulatory mechanisms of NOS expression and function, there is increasing interest in following NOS activity directly by monitoring NO production. Additionally, spatial and temporal measurements of NO are important for understanding its function and metabolism. In this work, developments in technology enabling NO detection in biological systems are reviewed. Measuring NO at single cell levels is important as NOS is heterogeneously distributed; however, such measurements are difficult as physiological NO levels are in the low nanomolar to low micromolar range. Here, three categories of analytical techniques enabling NO detection at single cell levels are highlighted: fluorescence microscopy, capillary electrophoresis with laser induced fluorescence detection, and electrochemistry. For each, the basic principles, performance, applications, figures of merits and limitations are presented in terms of single cell NO detection.  相似文献   

18.
Owen TM  Rohde JU 《Inorganic chemistry》2011,50(11):5283-5289
Reaction of [FeO(tmc)(OAc)](+) with the free radical nitrogen monoxide afforded a mixture of two Fe(II) complexes, [Fe(tmc)(OAc)](+) and [Fe(tmc)(ONO)](+) (where tmc = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane and AcO(-) = acetate anion). The amount of nitrite produced in this reaction (ca. 1 equiv with respect to Fe) was determined by ESI mass spectrometry after addition of (15)N-enriched NaNO(2). In contrast to oxygen atom transfer to PPh(3), the NO reaction of [FeO(tmc)(OAc)](+) proceeds through an Fe(III) intermediate that was identified by UV-vis-NIR spectroscopy and ESI mass spectrometry and whose decay is dependent on the concentration of methanol. The observations are consistent with a mechanism involving oxide(?1-) ion transfer from [FeO(tmc)(OAc)](+) to NO to form an Fe(III) complex and NO(2)(-), followed by reduction of the Fe(III) complex. Competitive binding of AcO(-) and NO(2)(-) to Fe(II) then leads to an equilibrium mixture of two Fe(II)(tmc) complexes. Evidence for the incorporation of oxygen from the oxoiron(IV) complex into NO(2)(-) was obtained from an (18)O-labeling experiment. The reported reaction serves as a synthetic example of the NO reactivity of biological oxoiron(IV) species, which has been proposed to have physiological functions such as inhibition of oxidative damage, enhancement of peroxidase activity, and NO scavenging.  相似文献   

19.
20.
Dinitrosyl-iron complexes (DNICs) are stable carriers for nitric oxide (NO), an important biological signaling molecule and regulator. However, the insolubility of synthetic DNICs, such as Roussin's red ester (RRE), in water has impaired efforts to unravel their biological functions. Here, we report a water-soluble and structurally well-characterized RRE [Fe(mu-SC2H4COOH)(NO)2]2 (DNIC-1) and a {Fe(NO)2}(10) DNIC [(PPh2(Ph-3-SO3Na))2Fe(NO)2] (DNIC-2), their NO-induced protein regulation, and their cellular uptake mechanism using immortalized vascular endothelial cells as a model. Compared with the most common NO donor, S-nitroso-N-acetyl-penicillamine (SNAP), the in vitro NO release assay showed that both DNICs acted as much slower yet higher stoichiometric NO-release agents with low cytotoxicity (IC50 > 1 mM). Furthermore, L-cysteine facilitated NO release from SNAP and DNIC-1, but not DNIC-2, in a dose- and time-dependent manner. EPR spectroscopic analysis showed, for the first time, that intact DNIC-1 can either diffuse or be transported into cells independently and can transform to either paramagnetic protein bound DNIC in the presence of serum or [DNIC-(Cys)2] with excess L-cysteine under serum-free conditions. Both DNICs subsequently induced NO-dependent upregulation of cellular heat shock protein 70 and in vivo protein S-nitrosylation. We conclude that both novel water-soluble DNICs have potential to release physiologically relevant quantities of NO and can be a good model for deciphering how iron-sulfur-nitrosyl compounds permeate into the cell membrane and for elucidating their physiological significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号