共查询到20条相似文献,搜索用时 15 毫秒
1.
Bursten BE Chisholm MH Clark RJ Firth S Hadad CM MacIntosh AM Wilson PJ Woodward PM Zaleski JM 《Journal of the American Chemical Society》2002,124(12):3050-3063
The compounds ((t)BuCO(2))(3)M(2)(mu-O(2)CCO(2))M(2)(O(2)C(t)Bu)(3) (M(4)OXA), where M = Mo or W, are shown by analysis of powder X-ray diffraction data to have extended lattice structures wherein oxygen atoms from the oxalate and pivalate ligands of one M(4)OXA molecule are linked to metal atoms of neighboring molecules. Raman, resonance Raman, electronic absorption (2-325 K in 2-MeTHF), and emission spectra are reported, together with corresponding spectra of the mu-O(2)(13)C(13)CO(2) isotopomers. To aid in the assignment, the Raman spectra of K(2)C(2)O(4).H(2)O and K(2)(13)C(2)O(4).H(2)O have also been recorded. The visible region of the electronic spectra is dominated by intense, fully allowed MLCT transitions, M(2) delta to oxalate pi*, which show pronounced thermochromism and extensive vibronic progressions associated with the oxalate ligand at low temperatures. With excitation into these charge-transfer bands, strong resonance enhancement is seen for Raman bands assigned to the oxalate nu(1)(a(g)) and, to a lesser extent, nu(2)(a(g)) modes. Electronic structure calculations for the model compounds (HCO(2))(3)M(2)(mu-O(2)CCO(2))M(2)(O(2)CH)(3), employing density functional theory (gradient corrected and time-dependent) with the Gaussian 98 and ADF 2000 packages, predict the planar oxalate D(2h) configuration to be favored, which maximizes M(2) delta to oxalate pi* back-bonding, and indicate low barriers (<8 kcal mol(-1)) to rotation about the oxalate C-C bonds. 相似文献
2.
Chisholm MH Davidson ER Huffman JC Quinlan KB 《Journal of the American Chemical Society》2001,123(39):9652-9664
M(2)(O(t)Bu)(6) compounds (M = Mo, W) react in hydrocarbon solvents with an excess of (t)BuSH to give M(2)(O(t)Bu)(2)(S(t)Bu)(4), red, air- and temperature-sensitive compounds. (1)H NMR studies reveal the equilibrium M(2)(O(t)Bu)(6) + 4(t)BuSH <==> M(2)(O(t)Bu)(2)(S(t)Bu)(4) + 4(t)BuOH proceeds to the right slowly at 22 degrees C. The intermediates M(2)(O(t)Bu)(4)(S(t)Bu)(2), M(2)(O(t)Bu)(3)(S(t)Bu)(3), and M(2)(O(t)Bu)(5)(S(t)Bu) have been detected. The equilibrium constants show the M-O(t)Bu bonds to be enthalpically favored over the M-S(t)Bu bonds. In contrast to the M(2)(O(t)Bu)(6) compounds, M(2)(O(t)Bu)(2)(S(t)Bu)(4) compounds are inert with respect to the addition of CO, CO(2), ethyne, (t)BuC triple bond CH, MeC triple bond N, and PhC triple bond N. Addition of an excess of (t)BuSH to a hydrocarbon solution of W(2)(O(t)Bu)(6)(mu-CO) leads to the rapid expulsion of CO and subsequent formation of W(2)(O(t)Bu)(2)(S(t)Bu)(4). Addition of an excess of (t)BuSH to hydrocarbon solutions of [Mo(O(t)Bu)(3)(NO)](2) and W(O(t)Bu)(3)(NO)(py) gives the structurally related compounds [Mo(S(t)Bu)(3)(NO)](2) and W(S(t)Bu)(3)(NO)(py), with linear M-N-O moieties and five-coordinate metal atoms. The values of nu(NO) are higher in the related thiolate compounds than in their alkoxide counterparts. The bonding in the model compounds M(2)(EH)(6), M(2)(OH)(2)(EH)(4), (HE)(3)M triple bond CMe, and W(EH)(3)(NO)(NH(3)) and the fragments M(EH)(3), where M = Mo or W and E = O or S, has been examined by DFT B3LYP calculations employing various basis sets including polarization functions for O and S and two different core potentials, LANL2 and relativistic CEP. BLYP calculations were done with ZORA relativistic terms using ADF 2000. The calculations, irrespective of the method used, indicate that the M-O bonds are more ionic than the M-S bonds and that E ppi to M dpi bonding is more important for E = O. The latter raises the M-M pi orbital energies by ca. 1 eV for M(2)(OH)(6) relative to M(2)(SH)(6). For M(EH)(3) fragments, the metal d(xz)(),d(yz)() orbitals are destabilized by OH ppi bonding, and in W(EH)(3)(NO)(NH(3)) the O ppi to M dpi donation enhances W dpi to NO pi* back-bonding. Estimates of the bond strengths for the M triple bond M in M(2)(EH)(6) compounds and M triple bond C in (EH)(3)M triple bond CMe have been obtained. The stronger pi donation of the alkoxide ligands is proposed to enhance back-bonding to the pi* orbitals of alkynes and nitriles and facilitate their reductive cleavage, a reaction that is not observed for their thiolate counterpart. 相似文献
3.
4.
Barybin MV Chisholm MH Dalal NS Holovics TH Patmore NJ Robinson RE Zipse DJ 《Journal of the American Chemical Society》2005,127(43):15182-15190
The preparation of 2,6-azulenedicarboxylic acid (I) from its diester, 2-CO(2)(t)Bu-6-CO(2)-C(10)H(6) (II), is reported together with the crystal and molecular structure of the ester, II. From the reactions between the dicarboxylic acid I and the MM quadruply bonded complexes M(2)(O(2)C(t)Bu)(4), where M = Mo or W, the azulenedicarboxylate bridged complexes [M(2)(O(2)C(t)Bu)(3)](2)(mu-2,6-(CO(2))(2)-C(10)H(6)) have been isolated, III (M = Mo) and IV (M = W). The latter compounds provide examples of electronically coupled M(2) centers via a polar bridge. The compounds show intense electronic absorptions due to metal-to-bridge charge transfer. This occurs in the visible region of the spectrum for III (M = Mo) but in the near-IR for IV (M = W). One electron oxidation with Ag(+)PF(6)(-) in THF generates the radical cations III(+) and IV(+). By both UV-vis-NIR and EPR spectroscopy the molybdenum ion III(+) is shown to be valence trapped or Class II on the Robin and Day classification scheme. Electrochemical, UV-vis-NIR, and EPR spectroscopic data indicate that, in the tungsten complex ion IV(+), the single electron is delocalized over the two W(2) centers that are separated by a distance of ca. 13.6 A. Furthermore, from the hyperfine coupling to (183)W (I = (1)/(2)), the singly occupied highest molecular orbital is seen to be polarized toward one W(2) center in relationship to the other. Electronic structure calculations employing density functional theory indicate that the HOMO in compounds III and IV is an admixture of the two M(2) delta orbitals that is largely centered on the M(2) unit having proximity to the C(5) ring of the azulenedicarboxylate bridge. The energy of the highest occupied orbital of the bridge lies very close in energy to the M(2) delta orbitals. However, this orbital does not participate in electronic coupling by a hole transfer superexchange mechanism, and the electronic coupling in the radical cations of III and IV occurs by electron transfer through the bridge pi system. 相似文献
5.
Alberding BG Chisholm MH Gustafson TL Liu Y Reed CR Turro C 《The journal of physical chemistry. A》2010,114(48):12675-12681
The title compounds trans-M(2)(O(2)CMe)(2)[C((i)PrN)(2)C≡C-Ph](2), I (M = Mo) and II (M = W), show electronic absorptions in the visible region of the spectrum assignable to (1)MLCT [M(2)δ to phenylethynylamidinate π*]. These compounds show dual emission from S(1) and T(1) states. For both I and II, S(1) is (1)MLCT, but for I the T(1) state is shown to be MMδδ* while for II T(1) is (3)MLCT. The lifetimes of the S(1) and T(1) states have been determined by femtosecond and nanosecond transient absorption spectroscopy: for I S(1) ~ 20 ps and T(1) ~ 100 μs and for II S(1) ~ 6 ps and T(1) ~ 5 μs. From solvent dependence of the absorption and emission spectra, we suggest that the S(1) states are localized on one amidinate ligand though the initial absorption is to a delocalized state. 相似文献
6.
A series of tetraalkynylplatinate(II) complexes, (NBu(4))(2)[Pt(Ctbd1;CR)(4)] (R = C(6)H(4)N-4, C(6)H(4)N-3, and C(6)H(3)N(2)-5), and the diynyl analogues, (NBu(4))(2)[Pt(Ctbd1;CCtbd1;CR)(4)] (R = C(6)H(5) and C(6)H(4)CH(3)-4), have been synthesized. These complexes displayed intense photoluminescence, which was assigned as metal-to-ligand charge transfer (MLCT) transitions. Reaction of (Bu(4)N)(2)[Pt(Ctbd1;CC(5)H(4)N-4)(4)] with 4 equiv of [Pt((t)Bu(3)trpy)(MeCN)](OTf)(2) in methanol did not yield the expected pentanuclear platinum product, [Pt(Ctbd1;CC(5)H(4)N)(4)[Pt((t)Bu(3)trpy)](4)](OTf)(6), but instead afforded a strongly luminescent 4-ethynylpyridine-bridged dinuclear complex, [Pt((t)Bu(3)trpy)(Ctbd1;CC(5)H(4)N)Pt((t)Bu(3)trpy)](PF(6))(3,) which has been structurally characterized. The emission origin is assigned as derived from states of predominantly (3)MLCT [d(pi)(Pt) --> pi((t)Bu(3)trpy)] character, probably mixed with some intraligand (3)IL [pi --> pi(Ctbd1;C)], and ligand-to-ligand charge transfer (3)LLCT [pi(Ctbd1;C) --> pi((t)()Bu(3)trpy)] character. On the other hand, reaction of (Bu(4)N)(2)[Pt(Ctbd1;CCtbd1;CC(6)H(4)CH(3)-4)(4)] with [Ag(MeCN)(4)][BF(4)] gave a mixed-metal aggregate, [Pt(2)Ag(4)(Ctbd1;CCtbd1;CC(6)H(4)CH(3)-4)(8)(THF)(4)]. The crystal structure of [Pt(2)Ag(4)(Ctbd1;CCtbd1;CC(6)H(4)CH(3)-4)(8)(THF)(4)] has also been determined. A comparison study of the spectroscopic properties of the hexanuclear platinum-silver complex with its precursor complex has been made and their spectroscopic origins were suggested. 相似文献
7.
New quaternary lithium - d(0) cation - lone-pair oxides, Li(6)(Mo(2)O(5))(3)(SeO(3))(6) (Pmn2(1)) and Li(2)(MO(3))(TeO(3)) (P2(1)/n) (M = Mo(6+) or W(6+)), have been synthesized and characterized. The former is noncentrosymmetric and polar, whereas the latter is centrosymmetric. Their crystal structures exhibit zigzag anionic layers composed of distorted MO(6) and asymmetric AO(3) (A = Se(4+) or Te(4+)) polyhedra. The anionic layers stack along a 2-fold screw axis and are separated by Li(+) cations. Powder SHG measurements on Li(6)(Mo(2)O(5))(3)(SeO(3))(6) using 1064 nm radiation reveal a SHG efficiency of approximately 170 × α-SiO(2). Particle size vs SHG efficiency measurements indicate Li(6)(Mo(2)O(5))(3)(SeO(3))(6) is type 1 nonphase-matchable. Converse piezoelectric measurements result in a d(33) value of ~28 pm/V and pyroelectric measurements reveal a pyroelectric coefficient of -0.43 μC/m(2)K at 50 °C for Li(6)(Mo(2)O(5))(3)(SeO(3))(6). Frequency-dependent polarization measurements confirm that Li(6)(Mo(2)O(5))(3)(SeO(3))(6) is nonferroelectric, i.e., the macroscopic polarization is not reversible, or 'switchable'. Infrared, UV-vis, thermogravimetric, and differential thermal analysis measurements and electron localization function calculations were also done for all materials. 相似文献
8.
Multiple low-lying electronic states of M(3)O(9)(-) and M(3)O(9)(2-) (M = Mo, W) arise from the occupation of the near-degenerate low-lying virtual orbitals in the neutral clusters. We used density functional theory (DFT) and coupled cluster theory (CCSD(T)) with correlation consistent basis sets to study the structures and energetics of the electronic states of these anions. The adiabatic and vertical electron detachment energies (ADEs and VDEs) of the anionic clusters were calculated with 27 exchange-correlation functionals including one local spin density approximation functional, 13 generalized gradient approximation (GGA) functionals, and 13 hybrid GGA functionals, as well as the CCSD(T) method. For M(3)O(9)(-), CCSD(T) and nearly all of the DFT exchange-correlation functionals studied predict the (2)A(1) state arising from the Jahn-Teller distortion due to singly occupying the degenerate e' orbital to be lower in energy than the (2)A(1)' state arising from singly occupying the nondegenerate a(1)' orbital. For W(3)O(9)(-), the (2)A(1) state was predicted to have essentially the same energy as the (2)A(1)' state at the CCSD(T) level with core-valence correlation corrections included and to be higher in energy or essentially isoenergetic with most DFT methods. The calculated VDEs from the CCSD(T) method are in reasonable agreement with the experimental values for both electronic states if estimates for the corrections due to basis set incompleteness are included. For M(3)O(9)(2-), the singlet state arising from doubly occupying the nondegenerate a(1)' orbital was predicted to be the most stable state for both M = Mo and W. However, whereas M(3)O(9)(2-) was predicted to be less stable than M(3)O(9)(-), W(3)O(9)(2-) was predicted to be more stable than W(3)O(9)(-). 相似文献
9.
The reaction of (t)BuNHLi with TeCl(4) in toluene at -78 degrees C produces (t)BuNTe(&mgr;-N(t)Bu)(2)TeN(t)Bu (1) (55%) or [((t)BuNH)Te(&mgr;-N(t)Bu)(2)TeN(t)Bu]Cl (2) (65%) for 4:1 or 7:2 molar ratios, respectively. The complex {Te(2)(N(t)Bu)(4)[LiTe(N(t)Bu)(2)(NH(t)Bu)]LiCl}(2) (5) is obtained as a minor product (23%) from the 4:1 reaction. It is a centrosymmetric dimer in which each half consists of the tellurium diimide dimer 1 bonded through an exocyclic nitrogen atom to a molecule of LiTe(N(t)Bu)(2)(NH(t)Bu) which, in turn, is linked to a LiCl molecule. Crystals of 5 are monoclinic, of space group C2/c, with a = 27.680(6) ?, b = 23.662(3) ?, c = 12.989(2) ?, beta = 96.32(2) degrees, V = 8455(2) ?(3), and Z = 4. The final R and R(w) values were 0.046 and 0.047. At 65 degrees C in toluene solution, 5 dissociates into 1, LiCl, and {[LiTe(N(t)Bu)(2)(NH(t)Bu)](2)LiCl}(2) (4), which may also be prepared by treatment of [Li(2)Te(N(t)Bu)(3)](2) (6) with 2 equiv of HCl gas. The centrosymmetric structure of 6 consists of a distorted hexagonal prism involving two pyramidal Te(N(t)Bu)(3)(2)(-) anions linked by four Li atoms to give a Te(2)N(6)Li(4) cluster. Crystals of 6 are monoclinic, of space group P2(1)/c, with a = 10.194(2) ?, b = 17.135(3) ?, c = 10.482(2) ?, beta = 109.21(1) degrees, V = 1729.0(5) ?(3), and Z = 2. The final R and R(w) values were 0.026 and 0.023. VT (1)H and (7)Li NMR studies reveal that, unlike 1, compounds 2, 4, and 6 are fluxional molecules. Possible mechanisms for these fluxional processes are discussed. 相似文献
10.
11.
The solvothermal reaction of (N(C(4)H(9))(4))(2)[Re(2)Cl(8)] with trifluoroacetic acid and acetic anhydride leads to the new rhenium trifluoroacetate dimer N(C(4)H(9))(4)[Re(2)(OOCCF(3))Cl(6)] (1) and to the rhenium carbonyl dimer Re(2)(mu(2)-Cl)(2)(CO)(8) as the rhenium-reduced byproduct. The reaction of the precursor complex, N(C(4)H(9))(4)[Re(2)(OOCCF(3))Cl(6)] (1), with the organometallic carboxylic acid (CO)(6)Co(2)HCCCOOH leads to the cluster of clusters compound Re(2)(OOCCCHCo(2)(CO)(6))(4)Cl(2) (2), which has the dimer structure of Re(2)(OOCR)(4)Cl(2). Cyclic voltammetric measurements show that Re(2)(OOCCCHCo(2)(CO)(6))(4)Cl(2) (2) has one reduction centered on the dirhenium core and a reduction centered on the cobalt atoms. DFT calculations have been used to rationalize the observed displacements of the voltammetric signals in Re(2)(OOCCCHCo(2)(CO)(6))(4)Cl(2) (2) compared to the parent ligand (CO)(6)Co(2)HCCCOOH and rhenium pivalate. 相似文献
12.
S M Holmes D F Schafer P T Wolczanski E B Lobkovsky 《Journal of the American Chemical Society》2001,123(43):10571-10583
Treatment of NaW2Cl7(THF)5 with 4 equiv of (t)Bu3SiNHLi afforded the C2 W(III) dimer [((t)Bu3SiNH)2WCl]2 (1, d(W triple bond W) = 2.337(2) A), which is a rare, primary amide M2X4Y2 species. Its degradation provided evidence of NH bond activation by the ditungsten bond. Addition of 2 equiv of (t)Bu3SiNHLi or TlOSi(t)Bu3 to 1 yielded H2 and hydride ((t)Bu3SiN)2((t)Bu3SiNH)WH (2, d(WH) = 1.67(3) A) or ((t)Bu3SiN)2((t)Bu3SiO)WH (3). Thermolysis (60 degrees C, 16 h) of 1 in py gave ((t)Bu3SiN)2WHCl(py) (4-py, 40-50%), ((t)Bu3SiN)2WCl2(py) (6-py, 10%), and ((t)Bu3SiN)2HW(mu-Cl)(mu-H)2W(NSi(t)Bu3)py2 (5-py2, 5%), whereas thermolysis in DME produced ((t)Bu3SiN)2WCl(OMe) (7, 30%), ((t)Bu3SiN)2WCl2 (6, 20%), and ((t)Bu3SiN)2HW(mu-Cl)(mu-H)2W(NSi(t)Bu3)DME (5-DME, 3%). Compound 7 was independently produced via thermolysis of 4-py and DME (-MeOEt, -py), and THF and ethylene oxide addition to hydride 2 gave ((t)Bu3SiN)2((t)Bu3SiNH)WO(n)Bu (8) and ((t)Bu3SiN)2((t)Bu3SiNH)WOEt (9), respectively. Dichloride 6 was isolated from SnCl4 treatment of 1 with the loss of H2. Sequential NH bond activations by the W2 core lead to "((t)Bu3SiN)2WHCl" (4) and subsequent thermal degradation products. Thermolysis of 1 in the presence of H2C=CH(t)Bu and PhC triple bond CPh trapped 4 and generated ((t)Bu3SiN)2W((neo)Hex)Cl (10) and a approximately 6:1 mixture of ((t)Bu3SiN)2WCl(cis-CPh=CPhH) (11-cis) and ((t)Bu(3)SiN)2WCl(trans-CPh=CPhH) (11-trans), respectively. Thermolysis of the latter mixture afforded ((t)Bu3SiNH)((t)Bu3SiN)WCl(eta2-PhCCPh) (12) as the major constituent. Alkylation of 1 with MeMgBr produced ((t)Bu3SiN)2W(CH3)2 (13), as did addition of 2 equiv of MeMgBr to 6. X-ray crystal structure determinations of 1, 2, 5-py2, 6-py, 11-trans, and 12 confirmed spectroscopic identifications. A general mechanism that features a sequence of NH activations to generate 4, followed by chloride metathesis, olefin insertion, etc., explains the formation of all products. 相似文献
13.
Chisholm MH Davidson ER Quinlan KB 《Journal of the American Chemical Society》2002,124(51):15351-15358
Calculations employing density functional theory (Gaussian 98, B3LYP, LANL2DZ, 6-31G) have been undertaken to interrogate the factors influencing the metathesis reaction involving M-M, C-C, and M-C triple bonds for the model compounds M(2)(EH)(6), M(2)(EH)(6)(mu-C(2)H(2)), and [(HE)(3)M(tbd1;CH)](2), where M = Mo, W and E = O, S. Whereas in all cases the ethyne adducts are predicted to be enthalpically favored in the reactions between M(2)(EH)(6) compounds and ethyne, only when M = W and E = O is the alkylidyne product [(HO)(3)W(tbd1;CH)](2) predicted to be more stable than the alkyne adduct. For the reaction M(2)(EH)(6)(mu-C(2)H(2)) --> [(HE)(3)M(tbd1;CH)](2), the deltaG degrees values (kcal mol(-)(1)) are -6 (M = W, E = O), +5 (M = Mo, E = O), +18 (M = W, E = S), and +21 (M = Mo, E = S) and the free energies of activation are calculated to be deltaG() = +19 kcal mol(-)(1) (M = W, E = O) and +34 kcal mol(-)(1) (M = Mo, E = O), where the transition state involves an asymmetric bridged structure M(2)(OH)(4)(mu-OH)(2)(CH)(mu-CH) in which the C-C bond has broken; C.C = 1.89 and 1.98 A for W and Mo, respectively. These results are discussed in terms of the experimental observations of the reactions involving ethyne and the symmetrically substituted alkynes (RCCR, where R = Me, Et) with M(2)(O(t)()Bu)(6) and M(2)(O(t)()Bu)(2)(S(t)()Bu)(4) compounds, where M = Mo, W. 相似文献
14.
The hydrothermal syntheses of a family of new alkali-metal/ammonium vanadium(V) methylphosphonates, M(VO(2))(3)(PO(3)CH(3))(2) (M = K, NH(4), Rb, Tl), are described. The crystal structures of K(VO(2))(3)(PO(3)CH(3))(2) and NH(4)(VO(2))(3)(PO(3)CH(3))(2) have been determined from single-crystal X-ray data. Crystal data: K(VO(2))(3)(PO(3)CH(3))(2), M(r) = 475.93, trigonal, R32 (No. 155), a = 7.139(3) ?, c = 19.109(5) ?, Z = 3; NH(4)(VO(2))(3)(PO(3)CH(3))(2), M(r) = 454.87, trigonal, R32 (No. 155), a = 7.150(3) ?, c = 19.459(5) ?, Z = 3. These isostructural, noncentrosymmetric phases are built up from hexagonal tungsten oxide (HTO) like sheets of vertex-sharing VO(6) octahedra, capped on both sides of the V/O sheets by PCH(3) entities (as [PO(3)CH(3)](2-) methylphosphonate groups). In both phases, the vanadium octahedra display a distinctive two short + two intermediate + two long V-O bond distance distribution within the VO(6) unit. Interlayer potassium or ammonium cations provide charge balance for the anionic (VO(2))(3)(PO(3)CH(3))(2) sheets. Powder X-ray, TGA, IR, and Raman data for these phases are reported and discussed. The structures of K(VO(2))(3)(PO(3)CH(3))(2) and NH(4)(VO(2))(3)(PO(3)CH(3))(2) are compared and contrasted with related layered phases based on the HTO motif. 相似文献
15.
16.
The first example of a mononuclear diphosphanidoargentate, bis[bis(trifluoromethyl)phosphanido]argentate, [Ag[P(CF(3))(2)](2)](-), is obtained via the reaction of HP(CF(3))(2) with [Ag(CN)(2)](-) and isolated as its [K(18-crown-6)] salt. When the cyclic phosphane (PCF(3))(4) is reacted with a slight excess of [K(18-crown-6)][Ag[P(CF(3))(2)](2)], selective insertion of one PCF(3) unit into each silver phosphorus bond is observed, which on the basis of NMR spectroscopic evidence suggests the [Ag[P(CF(3))P(CF(3))(2)](2)](-) ion. On treatment of the phosphane complexes [M(CO)(5)PH(CF(3))(2)] (M = Cr, W) with [K(18-crown-6)][Ag(CN)(2)], the analogous trinuclear argentates, [Ag[(micro-P(CF(3))(2))M(CO)(5)](2)](-), are formed. The chromium compound [K(18-crown-6)][Ag[(micro-P(CF(3))(2))Cr(CO)(5)](2)] crystallizes in a noncentrosymmetric space group Fdd2 (No. 43), a = 2970.2(6) pm, b = 1584.5(3) pm, c = 1787.0(4), V = 8.410(3) nm(3), Z = 8. The C(2) symmetric anion, [Ag[(micro-P(CF(3))(2))Cr(CO)(5)](2)](-), shows a nearly linear arrangement of the P-Ag-P unit. Although the bis(pentafluorophenyl)phosphanido compound [Ag[P(C(6)F(5))(2)](2)](-) has not been obtained so far, the synthesis of its trinuclear counterpart, [K(18-crown-6)][Ag[(micro-P(C(6)F(5))(2))W(CO)(5)](2)], was successful. 相似文献
17.
Two new nickel(II) molybdenum(VI) selenium(IV) and tellurium(IV) oxides generally formulated as Ni3(Mo2O8)(XO3) (X = Se, Te) have been synthesized by solid-state reactions of NiO, MoO3, and SeO2 (or TeO2). Both compounds feature 3D network structures built of [Mo4O16]8- tetranuclear cluster units and 2D nickel(II) selenite or tellurite layers. The nickel(II) selenite layer in Ni3(Mo2O8)(SeO3) is formed by [Ni6O22]32- hexanuclear clusters interconnected by selenite groups whereas the thick nickel(II) tellurite layer in Ni3(Mo2O8)(TeO3) is constructed by corrugated nickel(II) oxide chains bridged by the tellurite groups. The results of magnetic property measurements indicate that there are considerable ferromagnetic interactions between nickel(II) centers in both compounds. Their optical properties and band structures have been also studied. 相似文献
18.
Takanashi K Lee VY Matsuno T Ichinohe M Sekiguchi A 《Journal of the American Chemical Society》2005,127(16):5768-5769
The anionic complex of [tetrakis(di-tert-butylmethylsilyl) tetrasilacyclobutadiene]dicarbonylcobalt, [(R4Si4)Co(CO)2]-.K+ (R = SiMetBu2) 2-.K+, was synthesized by the reaction of tetrasilacyclobutadiene dianion dipotassium salt [R4Si4]2-.2K+ 1 with an excess of CpCo(CO)2 in THF. X-ray analysis of 2-.[K+(diglyme)2(THF)] showed an almost planar Si4 ring of rectangular shape with an in-plane arrangement of the silyl substituents. 2- was also prepared as a free anion with the [K+[2.2.2]cryptand] counterion by complexation with [2.2.2]cryptand and as a dimer {2-.[K+(THF)3]}2 without complexing reagents in THF. Such a tetrasilacyclobutadiene fragment represents a new type of ligand for Co complexes, being the first example of a cyclobutadiene containing only heavier group 14 elements. 相似文献
19.
Sokolov MN Gushchin AL Kovalenko KA Peresypkina EV Virovets AV Sanchiz J Fedin VP 《Inorganic chemistry》2007,46(6):2115-2123
The reaction of aqueous [W3S7(C2O4)3](2-) with Ln(3+) and Th(4+) in a 1:1 molar ratio leads to oxalate-bridged heteropolynuclear molecular complexes and coordination polymers. La(3+) and Ce(3+) give a layered structure with big (about 1.8 nm) honeycomb pores which are filled with water molecules and lanthanide ions, in {[Ln(H2O)6]3[W3S7(C2O4)3]4}Br x xH2O (Ia and Ib). The smaller Pr(3+), Nd(3+), Sm(3+), Eu(3+), and Gd(3+) ions give discrete nanomolecules [(W3S7(C2O4)3Ln(H2O)5)2(mu-C2O4)] (with a separation of about 3.2 nm between the most distant parts of the molecule), which are further united into zigzag chains by specific S2...Br- contacts to achieve the overall stoichiometry K[(W3S7(C2O4)3Ln(H2O)5)2(mu-C2O4)]Br.xH2O (IIa-IId). Th(4+) gives K2[(W3S7(C2O4)3)4Th2(OH)2(H2O)10] x 14.33H2O (III) with a nanosized discrete anion (with a separation of about 2.7 nm between the most distant parts of the molecule), in which two thorium atoms are bound via two hydroxide groups into the Th2(OH)2(6+) unit, and each Th is further coordinated by five water molecules and two monodentate [W3S7(C2O4)](2-) cluster ligands. All compounds were characterized by X-ray structure analysis and IR spectroscopy. Magnetic susceptibility measurements in the temperature range of 2-300 K show weak antiferromagnetic interactions between two lanthanides atoms for compounds IIa, IIb, and IId. The thermal decomposition of Ia, Ib, and IIb was studied by thermogravimetry. 相似文献
20.
Byrnes MJ Chisholm MH Dye DF Hadad CM Pate BD Wilson PJ Zaleski JM 《Dalton transactions (Cambridge, England : 2003)》2004,(4):523-529
From the reactions between [M2(O2CtBu)4] and 9,10-anthracenedicarboxylic acid in toluene, the dicarboxylate bridged complexes [[M2(O2CtBu)3]2(mu-9,10An(CO2)2)], have been obtained as microcrystalline yellow (M = Mo) and red (M = W) powders. The powders are soluble in THF forming intense red (M = Mo) and green (M = W) solutions. The electronic absorption spectra in 2-MeTHF have been recorded as a function of temperature (2-298 K) and show a small bathochromic shift on cooling. The electronic structures have been investigated by molecular orbital calculations employing density functional theory on the model compounds [(HCO2)3M2]2(mu-9,10-An(CO2)2) where the M4 unit is constrained to lie in a plane. These reveal a minimum energy, gas-phase structure wherein the plane of the anthracene is twisted by ca. 54 degrees with respect to its 9,10-carboxylate units for both Mo and W. The results of these calculations are correlated with the electronic absorption spectral data and the electrochemical measurements (CV and DPV) of the first and second oxidation waves. The EPR spectra of the radical cations formed by single-electron oxidation with [Cp2Fe](+)[PF6]- in a THF-CH2Cl2 solvent mixture show that the complexes are valence trapped at ambient temperature on the EPR timescale. These results are discussed in the light of recent studies of dicarboxylate-linked MM quadruple bonds. 相似文献