首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ag负载TiO2纳米管微波辅助水热法制备及其光催化性能   总被引:1,自引:0,他引:1  
陈淑海  徐耀  吕宝亮  吴东 《物理化学学报》2011,27(12):2933-2938
以微波辅助水热法制备了二氧化钛纳米管,然后通过浸渍法在其表面负载了银纳米颗粒.所得样品用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、氮吸附、X射线光电子能谱(XPS)、紫外-可见漫反射等测试方法表征.微波加热处理可以大大缩短反应时间,产物为无定型纳米管,经高温焙烧后转变成锐钛矿型二氧化钛.所得纳米管的外径为7-8 nm,内径为5-6 nm,管长约200 nm,比表面积可达371 m2·g-1.负载的银分散在纳米管的表面,对纳米管的结构与晶型没有影响,但是拓宽了二氧化钛的光吸收范围,使吸收边红移至可见光区,并且有效抑制了光生电子空穴的复合.在可见光降解罗丹明B的实验过程中,与Ag负载的P25及纯二氧化钛纳米管相比,Ag负载二氧化钛纳米管具有更高的可见光催化活性,并且当Ag/Ti 物质的量的比为0.5%时,可见光催化性能最好.  相似文献   

2.
锐钛矿型纳米TiO2介孔粉体表面织构的研究   总被引:13,自引:0,他引:13  
以硫酸钛和尿素为原料,聚乙二醇-1000为空间构造剂,104℃下经尿素水解均匀沉淀法研制颗粒分散均匀、粒径可控的高热稳定性锐钛矿型纳米TiO2介孔粉体,并对其晶相、颗粒大小、比表面积、形貌和孔道结构进行了表征.结果表明,未经任何热处理的TiO2粉体即为锐钛型晶相,颗粒为均匀分散的类球型颗粒,且颗粒间形成直通型的介孔孔道,其孔径在10~30nm之间.控制焙烧温度可以达到控制颗粒大小及形貌的目的,经850℃焙烧5h的样品仍保持锐钛矿型晶相,未出现向金红石型晶相转变的迹象.  相似文献   

3.
《Arabian Journal of Chemistry》2020,13(10):7274-7288
It was for the first time that the complex compound of gallic acid with titanium (IV) salt was used as a precursor to synthesize titania nanotubes. The study was separated into four main sections; (I) synthesizing the complex of titanium with gallic acid, (II) synthesizing anatase and rutile phases through thermal decomposing of the complex, (III) investigating the possibility to synthesize titania nanotubes from the rutile and anatase phases, and (IV) photocatalytic ability of all the nanoparticles.Different methods were applied to analysis, including X-ray diffraction, 1H NMR, FT-IR spectroscopy, elemental analysis, quantum-chemical modeling, Raman spectroscopy, thermal analysis, photoluminescence, BET analysis (to investigate the specific surface activity, total pore volume), EDX, electron microscopy (SEM), acceleration voltages, electrical conductivity, BJH method (to determine average pore diameter), and UV-Vis spectroscopy.We illustrated the possibility of the synthesis of the titania nanotubes from the anatase phase, while rutile phase was not turned to a tube shape.The photocatalytic ability of the obtained nanoparticles was tested by degrading bromophenol blue, as an organic pollutant, under weak light. TiO2 in the form of nanotubes could reduce the concentration of bromophenol blue to 82%, as well as the rutile phase - to 70%, and finally anatase as nan-spheres to 36%.  相似文献   

4.
MCM-41分子筛担载纳米TiO2复合材料光催化降解罗丹明B   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法将TiO2担载在介孔MCM-41分子筛上, 制备了不同TiO2含量的系列TiO2/MCM-41复合材料, 利用X射线衍射、N2吸附、紫外-可见光谱和透射电镜等方法对其进行表征. TiO2的晶型为锐钛矿相, 复合材料的比表面积和孔体积随其中TiO2担载量(复合材料中TiO2与MCM-41的质量比)的增加而减小, TiO2的平均粒径随其担载量的增加而增大. 以罗丹明B的光催化降解为探针反应, 评价了TiO2/MCM-41复合材料的光催化降解活性. 结果表明, 在紫外光照射下, 罗丹明B在该复合材料上的光催化降解反应遵循一级反应动力学, 复合材料对罗丹明B的光催化降解活性明显高于商用TiO2 (P-25), 复合材料的光催化降解活性由复合材料的吸附能力和所含TiO2的光催化活性共同决定.  相似文献   

5.
Bulk hierarchical anatase‐titania/cellulose composite sheets were fabricated by subjecting an ultrathin titania gel film pre‐deposited filter paper to a solvo‐co‐hydrothermal treatment by using titanium butoxide as the precursor to grow anatase‐titania nanocrystallites on the cellulose nanofiber surfaces. The titanium butoxide specie is firstly absorbed onto the nanofibers of the cellulose substance through a solvothermal process, which was thereafter hydrolyzed and crystallized upon the subsequent hydrothermal treatment, leading to the formation of fine anatase‐titania nanoparticles with sizes of 2–5 nm uniformly anchored on the cellulose nanofibers. The resulting anatase‐titania/cellulose composite sheet shows a significant photocatalytic performance towards degradation of a methylene blue dye, and introduction of silver nanoparticles into the composite sheet yields an Ag‐NP/anatase‐titania/cellulose composite material possessing excellent antibacterial activity against both Gram‐positive and Gram‐negative bacteria.  相似文献   

6.
Composite adsorbents of carbon and alumina intercalated montmorillonite were prepared and characterized by adsorption of N2and O2at various temperatures. The effects of pyrolysis, temperature, heating rate, subsequent degassing, and doping of cations and anions were investigated. The adsorption capacities of the composite adsorbents developed at higher temperatures (0 and −79°C) are found to be larger than those of normal alumina pillared clays. The experimental results showed that the framework of these adsorbents is made of alumina particles and clay sheets while the pyrolyzed carbon distributes in the space of interlayers and interpillars. The pores between the carbon particles, clay sheets, and alumina pillars are very narrow with very strong adsorption forces, leading to enhanced adsorption capacities at 0 and −79°C. The composite adsorbents exhibit features similar to those of carbonaceous adsorbents. Their pore structures, adsorption capacities, and selectivities to oxygen can be tailored by a controlled degassing procedure. Meanwhile, ions can be doped into the adsorbents to modify their adsorption properties, as usually observed for oxide adsorbents like zeolite and pillared clays. Such flexibility in pore structure tailoring is a potential advantage of the composite adsorbents developed for their adsorption and separation applications.  相似文献   

7.
Preparation and characterization of perfluorosulfonic resin/titania organic-inorganic hybrid films were presented. The transparent hybrid films were prepared by hydrothermal treatment at low temperature of a mixed solution of tetrabutyl titanate and perfluorosulfonic resin with the help of acetylacetone. The characterization was carried out by SEM,XRD,FT-IR,UV-Vis and TGA. The results showed that the perfluorosulfonic resin/titania hybrid transparent films were composed of titania particles dispersed in the perfluorosulfonic resin matrix very well and the titania was of anatase phase. Its diameter de-creased with increasing weight ratio of titania to perfluorosulfonic resin.  相似文献   

8.
Iodine-doped (I-doped) mesoporous titania with a bicrystalline (anatase and rutile) framework was synthesized by a two-step template hydrothermal synthesis route. I-doped titania with anatase structure was also synthesized without the use of a block copolymer as a template. The resultant titania samples were characterized by X-ray diffraction, Raman spectroscopy, Fourier transform infrared, nitrogen adsorption, transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-visible absorption spectroscopy. Both I-doped titania samples, with and without template, show much better photocatalytic activity than commercial P25 titania in the photodegradation of methylene blue under the irradiation of visible light (>420 nm) and UV-visible light. Furthermore, I-doped mesoporous titania with a bicrystalline framework exhibits better activity than I-doped titania with anatase structure. The effect of rutile phase in titania on the adsorptive capacity of water and surface hydroxyl, and photocatalytic activity was investigated in detail. The excellent performance of I-doped mesoporous titania under both visible light and UV-visible light can be attributed to the combined effects of bicrystalline framework, high crystallinity, large surface area, mesoporous structure, and high visible light absorption induced by I-doping.  相似文献   

9.
AlFe层柱粘土催化剂催化甲苯在水中的降解   总被引:4,自引:0,他引:4  
The catalytic wet peroxide oxidation (CWPO) of toluene on two bentonite-based AlFe-pillared clays (PILCs) with different iron contents was investigated. The PILCs were obtained using bentonite clay from Bogovina, Serbia. The change in chemical and phase composition and textural properties of the starting clay and synthesized catalysts was monitored using X-ray diffraction, inductively coupled plasma optical emission spectrometry, UV-Vis diffuse reflectance spectrometry, and physisorption of nitrogen. The catalytic performance was examined using gas chromatography. The Na-exchange process lowered the (001) smectite basal plane spacing, but the clay retained its swelling properties, while the pillaring process increased it. The surface areas of both synthesized pillared clays increased to similar values although their Fe content was different. At 37 ℃, both catalysts show significant toluene degradation, with the one richer in Fe having higher efficiency. The leaching of the active cations during reaction was negligible, and the catalysts were stable. AlFe-pillared clay catalysts can be used in CWPO for the elimination of BTEX compounds from plant effluent streams.  相似文献   

10.
《Microporous Materials》1997,8(3-4):177-186
A systematic investigation has been undertaken for tailoring the micropore structure of the pillared clay. Besides the type of metal oxide (e.g. Al2O3 vs. ZrO2) being used as the pillars, the important factors for determining the micropore structure are OH/Al ratio (for Al2O3-pillared clay), calcination temperature and the starting clay. The effect of the cation exchange capacity (CEC) of the clay on the microporous structure (and consequently the adsorption properties) is reported for the first time. Two clays with widely different CECs are used: Arizona montmorillonite (CEC = 1.40 mequiv./g) and Wyoming montmorillonite (CEC = 0.76 mequiv./g). The interlayer spacings of the pillared clays from these different clays are essentially the same, since the interlayer spacing is controlled by the sizes of the oligomers that intercalate between the clay layers. However, the pillar density in the pillared clay is substantially higher with a high CEC in the starting clay, and is shown to be approximately proportional to the CEC. Consequently, the interpillar spacing is substantially lower resulting from the higher CEC. The CH4 adsorption on the pillared clay is nearly doubled by the smaller interpillar spacing, due to the back-to-back overlapping potential in the micropores. The N2 adsorption was not significantly influenced because of its low polarizability (hence low inductive potential). Increasing the calcination temperature of the Al2O3-pillared clay from 400°C to 600°C can decrease the interlayer spacing, but only by 1 (from 8.7 to 7.7 ). The CH4/N2 adsorption ratio of 2.35 is reached on the Al2O3-pillared Arizona clay that is calcined at 600°C. Finally, the surface and pore volume are influenced by the OH/Al ratio (or pH) during pillaring, since this ratio determines the size and charge of the oligomers. A peak surface area is reached at OH/Al = 2.2.  相似文献   

11.
Phosphorous-doped titania was synthesized by a one step hydrothermal method. These samples exist in anatase phase with much higher crystallinity compared to those prepared by conventional calcination method. In addition, P-doping induced additional hydroxyl groups on surfaces and decreased the numbers of oxygen vacancies in the bulk. Therefore, the methylene blue (MB) degradation performance on the phosphorous-doped photocatalyst is much enhanced and superior to that of the commercial P25. The hydrothermal method proves to be very suitable for the synthesis of P-doped titania photocatalyst.  相似文献   

12.
低温水热法制备硅胶负载型二氧化钛催化剂   总被引:4,自引:0,他引:4  
TiO2作为一种优良的光催化材料,能够降解有机物,起到抗菌防污的作用,其在工业上的潜在应用已吸引众多研究者的普遍关注和深入研究[1-3]。为了进一步提高它的光催化活性,研究者试图运用各种方法和技术对纯TiO2进行改进。负载[3]是其中常用方法之一。对于无负载的二氧化钛,由于本  相似文献   

13.
Porous Ag2S sensitized TiO2 catalysts were synthesized by the hydrothermal process.The crystallization and porous structure of the Ag2S/TiO2 composite photocatalysts were investigated by X-ray diffraction,scanning electron microscopy with energy dispersive X-ray analysis,UV-Vis diffuse reflectance spectroscopy,and N2 adsorption.The Ag2S/TiO2 composites were mainly composed of anatase TiO2 and acanthite Ag2S.The absorption edge wavelengths of TiO2 and the Ag2S/TiO2 composite prepared with 3 mmol Na2S.5H2O were 400 and 800 nm,respectively,that is,the absorption edge of the composite had a pronounced red shift.The photocatalytic activity under visible light was investigated by the degradation of methylene blue with a UV-Vis spectrophotometer.The photocatalytic activities under visible light of the Ag2S/TiO2 photocatalysts were much higher than that of TiO2.  相似文献   

14.
With the aim of improving the microstructures and properties of TiO2 pillared montmorillonite (MMT), a long-chain polymer (polyoxypropylenediamine, PPO-D 2000) was used as a template to synthesize composite pillared MMT. The materials were characterized by X-ray powder diffraction (XRD), Fourier transform infrared (FT-IR) spectrophotometer, Fourier Raman (FT-Raman) spectrophotometer, thermo-gravimeter/differential thermogravimeter (TG/DSC), transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) methods. The results show that as compared to low-molecular weight surfactant, this polymer significantly expanded the interlayer spacing and thus more TiO2 could be intercalated into MMT. The specific surface area of polymer/TiO2 pillared MMT was increased by 13% with comparison to TiO2 pillared MMT and rose to 241.52 m2/g. Both the pore diameter and volume are doubled, and thus the pore structure is optimized markedly. The investigation on the photo-catalytic degradation of methyl orange in aqueous solution show that the modulation of polymer molecules raise the adsorption content of montmorillonite and improve the photo-catalytic activity. Therefore, this process provides a novel alternative to design and prepare the advanced eco-catalytic materials with high adsorption capacity and photo-catalytic activity. __________ Translated from Huaxue Tongbao, 2007, 12: 936–941 [译自: 化学通报]  相似文献   

15.
 采用5种不同的纳米二氧化钛为光催化剂,考察了它们在丙炔水解反应中的光催化活性,并用X射线衍射和漫反射紫外-可见吸收光谱技术进行了表征.研究了催化剂表面物理化学性质与在丙炔光催化水解反应中的构效关系.实验结果表明,纳米二氧化钛光催化剂能够引发丙炔的光催化水解反应,生成乙烷和乙烯等产物;锐钛矿相纳米二氧化钛具有较高的光催化活性,在晶型相同的情况下,影响光催化活性的主要因素是催化剂的粒径和比表面积.  相似文献   

16.
Controlled gas adsorption properties of various pillared clays   总被引:1,自引:0,他引:1  
Microporous pillared clays (PILC) were prepared by the intercalation of montmorillonite with particles of titania (Ti-PILC), zirconia (Zr-PILC), alumina (Al-PILC), iron oxide (Fe-PILC) and mixed lanthania/alumina (LaAl-PILC). Nitrogen adsorption isotherms (77 K) and XRD data provided information on the porosity, surface area, micropore volume and interlayer distance of these samples. The surface area varied between 198 and 266 m2/g for Ti- and Fe-PILC, respectively. The titania pillared clay had also the highest micropore volume (0.142 cc/g) and interlayer spacing (16–20 Å), compared to the Zr-PILC, which had the smallest spacing between the layers (max, 4 Å). Despite this fact, Zr-PILC always showed a high adsorption capacity for gases such as N2, O2, Ar or CO2, due to its high adsorption field in the very small micropores.From gas adsorption experiments on these various PILCs, it became clear that their adsorption properties depend on the pillars in three ways: (i) the pillar height, (ii) the distribution of the pillars between the clay layers and (iii) the nature of the pillaring species.The incorporation of other elements in the pillars leads to specific adsorption sites in the pores. This was demonstrated by the preparation of mixed Fe/Cr and Fe/Zr pillared clays. Compared to the parent Fe-PILC, the incorporation of chromium and zirconium in the iron oxide pillars had a positive influence on the adsorption capacity. Also the modification of a PILC with cations increases both capacity and selectivity for gases. This was confirmed by the increased adsorption of N2, O2 and CO2 at 273 K on a Sr2+ exchanged Al-PILC.  相似文献   

17.
Platinum has been introduced into pillared clay as a complex with the organosilicon amine N’-[3-(trimethoxysilyl)propyl]diethyltriamine, as a complex with the organosilicon amine and zirconyl chloride, as an ammine complex, and by impregnation with a chloroplatinic acid solution followed by hydrogen reduction. The catalytic activity of the Pt-containing clays in CO oxidation in excess hydrogen was also studied. The last procedure yields the most active Pt-containing pillared clay. Calcium has been introduced into pillared clay by ion exchange, and it was found that the catalytic activity of the clay decreases with increasing Ca content.  相似文献   

18.
Adsorption behavior of carbon dioxide confined in pillared clays is analyzed by using constant pressure Gibbs ensemble Monte Carlo (GEMC) method. In our simulation, 1-site and 3-site models are used to represent carbon dioxide. At the 1-site model, carbon dioxide is described as a Lennard-Jones (LJ) sphere, while at the 3-site model, carbon dioxide is modeled as a three-sites linear chain represented by EPM2 potential considering the quadrapolar effect. The potential model from Yi et al. for pillared clays is used to emphasize its quasi two-dimensional structure. Comparing the calculated results from the 1-site and the 3-site models at T=228.15 and 258.15 K, we observe that the adsorption amount from the two models is the same basically. However, the local density presents a significant difference, because the shoulder in the main peak near the wall from 3-site model can reflect the orientation of carbon dioxide. Accordingly, in the systematical investigation to explore the effect of porosity and pore width on the adsorption of carbon dioxide in pillared clays, the 3-site model was only used. We observe that for a narrow pore of H=1.02 nm, each isotherm shape displays type I curve, suggesting that it is not inflected by the porosity. However, for the larger pores of H=1.70 and H=2.38 nm, the increase of the porosity alters the shape of adsorption isotherms from a simple linear relation to the first order jump, indicating that the porosity is of very important factor to affect adsorption and phase behavior of fluids confined in pillared clays. The excess adsorptions of carbon dioxide at supercritical temperatures of T=323.15 and 348.15 K are also investigated. We find that the maximum exists for each excess isotherm, and the optimal pressure corresponding to the maximum increases with the pore width. However, the porosity has no significant effect on the optimal pressure.  相似文献   

19.
Adsorption and characteristics of base-treated pillared clays   总被引:1,自引:0,他引:1  
The effect of base treatment on the cation exchange capacity (CEC) of pillared clays and their adsorption isotherms for Cu2+, Cr3+ and Pb2+ have been investigated. Results indicate that although the CEC of pillared clays are only about 15% of that of the parent clays, a large fraction of the native clays CEC may be recovered by treatment with base. The fraction of the CEC recovered depends upon the base strength, its concentration, and the temperature. Contrary to previous suggestions the mechanism of recovery is related to the destruction of pillars which is accompanied by the loss of surface area. It is possible under conditions specified to prepare these base treated pillared clays as a new class of useful, regenerable adsorbent for heavy metal adsorption from aqueous solution.  相似文献   

20.
通过物理混合法可控合成了分级混晶TiO2微纳米材料, 采用扫描电子显微镜(SEM)、 透射电子显微镜(TEM)、 X射线衍射仪(XRD)、 X射线光电子能谱仪(XPS)和固体紫外-可见分光光度计(UV-Vis)等对该微纳米材料进行了表征, 并评价了不同混晶比材料的光催化性能. 结果表明, 所得材料是由均匀负载金红石纳米颗粒的锐钛矿纳米片组装的三维分级结构. 其具有很高的光催化活性, 分级结构和混晶异相结的同时引入是提高材料光催化活性的关键.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号