首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The excited states of atomic anions in liquids are bound only by the polarization of the surrounding solvent. Thus, the electron-detachment process following excitation to one of these solvent-bound states, known as charge-transfer-to-solvent (CTTS) states, provides a useful probe of solvent structure and dynamics. These transitions and subsequent relaxation dynamics also are influenced by other factors that alter the solution environment local to the CTTS anion, including the presence of cosolutes, cosolvents, and other ions. In this paper, we examine the ultrafast CTTS dynamics of iodide in liquid tetrahydrofuran (THF) with a particular focus on how the solvent dynamics and the CTTS electron-ejection process are altered in the presence of various counterions. In weakly polar solvents such as THF, iodide salts can be strongly ion-paired in solution; the steady-state UV-visible absorption spectroscopy of various iodide salts in liquid THF indicates that the degree of ion-pairing changes from strong to weak to none as the counterion is switched from Na+ to tetrabutylammonium (t-BA+) to crown-ether-complexed Na+, respectively. In our ultrafast experiments, we have excited the I- CTTS transition of these various iodide salts at 263 nm and probed the dynamics of the CTTS-detached electrons throughout the visible and near-IR. In the previous paper of this series (Bragg, A. E.; Schwartz, B. J. J. Phys. Chem. B 2008, 112, 483-494), we found that for "counterion-free" I- (obtained by complexing Na+ with a crown ether) the CTTS electrons were ejected approximately 6 nm from their partner iodine atoms, the result of significant nonadiabatic coupling between the CTTS excited state and extended electronic states supported by the naturally existing solvent cavities in liquid THF, which also serve as pre-existing electron traps. In contrast, for the highly ion-paired NaI/THF system, we find that approximately 90% of the CTTS electrons are "captured" by a nearby Na+ to form (Na+, e-)THF "tight-contact pairs" (TCPs), which are chemically and spectroscopically distinct from both solvated neutral sodium atoms and free solvated electrons. A simple kinetic model is able to reproduce the details of the electron capture process, with 63% of the electrons captured quickly in approximately 2.3 ps, 26% captured diffusively in approximately 63 ps, and the remaining 11% escaping out into the solution on subnanosecond time scales. We also find that the majority of the CTTS electrons are ejected to within 1 or 2 nm of the Na+. This demonstrates that the presence of the nearby cation biases the relocalization of CTTS-generated electrons from I- in THF, changing the nonadiabatic coupling to the extended, cavity-supported electronic states in THF to produce a much tighter distribution of electron-ejection distances. In the case of the more loosely ion-paired t-BA+-I-/THF system, we find that only 10-15% of the CTTS-ejected electrons associate with t-BA+ to form "loose-contact pairs" (LCPs), which are characterized by a much weaker interaction between the electron and cation than occurs in TCPs. The formation of (t-BA+, e-)THF LCPs is characterized by a Coulombically induced blue shift of the free eTHF- spectrum on a approximately 5-ps time scale. We argue that the weaker interaction between t-BA+ and the parent I- results in little change to the CTTS-ejection process, so that only those electrons that happen to localize in the vicinity of t-BA+ are captured to form LCPs. Finally, we interpret the correlation between electron capture yield and counterion-induced perturbation of the I- CTTS transition as arising from changes in the distribution of ion-pair separations with cation identity, and we discuss our results in the context of relevant solution conductivity measurements.  相似文献   

2.
We propose a lattice fermion model suitable for studying the ultrafast photoexcitation dynamics of ordered chains of deoxyribonucleic acid (DNA) polymers. The model includes both parallel (intrachain) and perpendicular (cross-chain) terms as well as diagonal cross-chain terms coupling neighboring bases. The general form of our Hamiltonian is borrowed from lattice fermion models of quantum chromodynamics. The band structure for this model can be determined analytically, and we use this as a basis for computing the singly excited states of the poly(dA)poly(dT) DNA duplex using configuration interaction singles. Parameters for the model are taken from various literature sources and our own ab initio calculations. Results indicate that the excited states consist of a low energy band of dark charge-separated states followed by separate bands of delocalized excitonic states which have weak mixing between the thymidine and adenosine sides of the DNA chain. We then propose a lattice exciton model based upon the transition dipole-dipole couplings between bases and compare the analytical results for the survival probability of an initially localized exciton to exact numerical results. The results herein underscore the competing role of excitonic and charge-transfer dynamics in these systems.  相似文献   

3.
With the large dye molecules employed in typical studies of solvation dynamics, it is often difficult to separate the intramolecular relaxation of the dye from the relaxation associated with dynamic solvation. One way to avoid this difficulty is to study solvation dynamics using an atom as the solvation probe; because atoms have only electronic degrees of freedom, all of the observed spectroscopic dynamics must result from motions of the solvent. In this paper, we use ultrafast transient absorption spectroscopy to investigate the solvation dynamics of newly created sodium atoms that are formed following the charge transfer to solvent (CTTS) ejection of an electron from sodium anions (sodide) in liquid tetrahydrofuran (THF). Because the absorption spectra of the sodide reactant, the sodium atom, and the solvated electron products overlap, we first examined the dynamics of the ejected CTTS electron in the infrared to build a detailed model of the CTTS process that allowed us to subtract the spectroscopic contributions of the sodide bleach and the solvated electron and cleanly reveal the spectroscopy of the solvated atom. We find that the neutral sodium species created following CTTS excitation of sodide initially absorbs near 590 nm, the position of the gas-phase sodium D-line, suggesting that it only weakly interacts with the surrounding solvent. We then see a fast solvation process that causes a red-shift of the sodium atom's spectrum in approximately 230 fs, a time scale that matches well with the results of MD simulations of solvation dynamics in liquid THF. After the fast solvation is complete, the neutral sodium atoms undergo a chemical reaction that takes place in approximately 740 fs, as indicated by the observation of an isosbestic point and the creation of a species with a new spectrum. The spectrum of the species created after the reaction then red-shifts on a approximately 10-ps time scale to become the equilibrium spectrum of the THF-solvated sodium atom, which is known from radiation chemistry experiments to absorb near approximately 900 nm. There has been considerable debate as to whether this 900-nm absorbing species is better thought of as a solvated atom or a sodium cation:solvated electron contact pair, (Na+,e-). The fact that we observe the initially created neutral Na atom undergoing a chemical reaction to ultimately become the 900-nm absorbing species suggests that it is better assigned as (Na+,e-). The approximately 10-ps solvation time we observe for this species is an order of magnitude slower than any other solvation process previously observed in liquid THF, suggesting that this species interacts differently with the solvent than the large molecules that are typically used as solvation probes. Together, all of the results allow us to build the most detailed picture to date of the CTTS process of Na- in THF as well as to directly observe the solvation dynamics associated with single sodium atoms in solution.  相似文献   

4.
The ground electronic state (X 1A1) of tropolone has been examined theoretically by exploiting extensive sets of basis functions [e.g., 6-311++G(d,p) and aug-cc-pVDZ] in conjunction with the high levels of electron correlation made possible by density functional (DFT/B3LYP), Moller-Plesset perturbation (MP2), and coupled-cluster [CCSD and CCSD(T)] methods. Unconstrained MP2 and CCSD optimization procedures performed with the reference 6-311++G(d,p) basis predict a slightly nonplanar equilibrium structure characterized by a small barrier to skeletal inversion (< or =10 cm(-1) magnitude). Complementary harmonic frequency analyses have shown this nonplanarity to be a computational artifact arising from adversely tuned carbon d-orbital exponents embodied in the standard definitions of several Pople-type basis sets. Correlation-consistent bases such as Dunning's aug-cc-pVDZ are less susceptible to these effects and were employed to confirm that the X 1A1 hypersurface supports a rigorously planar global minimum. The fully optimized geometries and vibrational force fields obtained by applying potent coupled-cluster schemes to the relaxed-equilibrium (Cs) and transition-state (C2v) conformers of tropolone afford a trenchant glimpse of the key features that mediate intramolecular hydron exchange in this model system. By incorporating perturbative triples corrections at the substantial CCSD(T) level of theory, an interoxygen distance of r(O...O)=2.528 A was determined for the minimum-energy configuration, with the accompanying proton-transfer reaction being hindered by a barrier of 2557.0 cm(-1) height. The potential energy landscape in tropolone, as well as the nature of the attendant hydron migration process, is discussed within the framework of the encompassing G4 molecular symmetry group.  相似文献   

5.
Interaction with electron-donor and -acceptor molecules such as aniline and nitrobenzene brings about marked changes in the D, G, G' and 2D bands of the Raman spectrum and the electronic structure of graphene, prepared by the exfoliation of graphitic oxide.  相似文献   

6.
This paper shows the results of combined experimental and theoretical work that have unravelled the mechanism of ultrafast ejection of a methyl group from a cluster, the methyl iodide dimer (CH(3)I)(2). Ab initio calculations have produced optimized geometries for the dimer and energy values and oscillator strengths for the excited states of the A band of (CH(3)I)(2). These calculations have allowed us to describe the blue shift that had been observed in the past in this band. This blue shift has been experimentally determined with higher precision than in all previously reported experiments, since it has been measured through its effect upon the kinetic energy release of the fragments using femtosecond velocity map imaging. Observations of the reaction branching ratio and of the angular nature of the fragment distribution indicate that two main changes occur in A-band absorption in the dimer with respect to the monomer: a substantial change in the relative absorption to different states of the band, and, more importantly, a more efficient non-adiabatic crossing between two of those states. Additionally, time resolved experiments have been performed on the system, obtaining snapshots of the dissociation process. The apparent retardation of more than 100 fs in the dissociation process of the dimer relative to the monomer has been assigned to a delay in the opening of the optical detection window associated with the resonant multiphoton ionization detection of the methyl fragment.  相似文献   

7.
Fourier transform infrared spectroscopy is a popular method for the experimental investigation of hydrogen-bonded aggregates, but linking spectral information to microscopic information on aggregate size distribution and aggregate architecture is an arduous task. Static electronic structure calculations with an implicit solvent model, Car-Parrinello molecular dynamics (CPMD) using the Becke-Lee-Yang-Parr (BLYP) exchange and correlation energy functionals and classical molecular dynamics simulations for the all-atom version of the optimized parameters for liquid simulations (OPLS-AA) force field were carried out for an ensemble of 1-hexanol aggregates solvated in n-hexane. The initial configurations for these calculations were size-selected from a distribution of aggregates obtained from a large-scale Monte Carlo simulation. The vibrational spectra computed from the static electronic structure calculations for monomers and dimers and from the CPMD simulations for aggregates up to pentamers demonstrate the extent of the contribution of dangling or nondonating hydroxyl groups found in linear and branched aggregates to the "monomeric" peak. Furthermore, the computed spectra show that there is no simple relationship between peak shift and aggregate size nor architecture, but the effect of hydrogen-bond cooperativity is shown to differentiate polymer-like (cooperative) and dimer-like (noncooperative) hydrogen bonds in the vibrational spectrum. In contrast to the static electronic structure calculations and the CPMD simulations, the classical molecular dynamics simulations greatly underestimate the vibrational peak shift due to hydrogen bonding.  相似文献   

8.
Solvation of heterocyclic amines in CO(2)-expanded methanol (MeOH) has been explored with UV/vis spectroscopy and molecular dynamics (MD) simulations. A synergistic study of experiments and simulations allows exploration of solute and solvent effects on solvation and the molecular interactions that affect absorption. MeOH-nitrogen hydrogen bonds hinder the n-pi* transition; however, CO(2) addition causes a blue shift relative to MeOH because of Lewis acid/base interactions with nitrogen. Effects of solute structure are considered, and very different absorption spectra are obtained as nitrogen positions change. MD simulations provide detailed solvent clustering behavior around the solute molecules and show that the local solvent environment and ultimately the spectra are sensitive to the solute structure. This work demonstrates the importance of atomic-level information in determining the structure-property relationships between solute structure, local salvation, and solvatochromism.  相似文献   

9.
Using a range of realistic interface geometries obtained from a molecular dynamics simulation we study the effects of different microscopic atomic arrangements on the electronic structure and charge transfer rates of the prototypical photovoltaic interface between P3HT (poly(3-hexylthiophene)) and PCBM ([6,6]-phenyl-C(61)-butyric acid methyl ester). The electronic structures of charge-transfer (CT) states belong to two groups that can be denoted as "charge-separated" and "charge-bridging" states. For the former group of structures, which may lead to fully separated charges, the ranges and the average values of internal reorganization energy, the electronic coupling and the charge separated states energy are evaluated. A range and distribution of absolute charge separation (CS) and recombination (CR) rates are computed using the Marcus-Levich-Jortner rate equation. Due to the variety of P3HT/PCBM interface structures, a very broad range of CS (7.7 × 10(9)-1.8 × 10(12) s(-1)) and CR (2.5 × 10(5)-1.1 × 10(10) s(-1)) "instantaneous" rates are computed. However, the energetic parameters affecting the rate evolve in time due to the dynamic nature of the interface with a characteristic timescale of about 10 ns. For this reason the slowest CR instantaneous rates are not observed and the minimum CR rate observed is determined by the rate of conformational rearrangement at the interface. The combination of these observations provides a more general framework for the interpretation of experimental spectroscopic data, suggesting that the analysis based on simple first order rates may be insufficient to describe charge transfer in organic solar cell interfaces.  相似文献   

10.
11.
Although polaronic interactions and states abound in charge transfer processes and reactions, quantitative and separable determination of electronic and nuclear relaxation is still challenging. The present paper employs the amplitudes, polarizations, and phases of four-wave mixing signals to obtain unique dynamical information on relaxation processes following photoinduced charge transfer between iodide and 1-ethyl-4-(carbomethoxy)pyridinium ions. Pump-probe signal amplitudes reveal the coherent coupling of an underdamped 115 cm(-1) nuclear mode to the charge transfer excitation. Assignments of this recurrence to intramolecular vibrational modes of the acceptor and to modulation of the intermolecular donor-acceptor distance are discussed on the basis of a high-level density functional theory normal-mode analysis and previously observed wave packet dynamics of solvated molecular iodine. Nuclear relaxation of the acceptor induces sub-picosecond decay of the pump-probe polarization anisotropy from an initial value of 0.4 to an asymptotic value of -0.05. Electronic structure calculations suggest that relaxation along the torsional coordinate of the ethyl group is the origin of the anisotropy decay. Electric-field-resolved transient grating (EFR-TG) signal fields are obtained by spectral interferometry with a diffractive optic based interferometer. These measurements show that the signal phase and amplitude possess similar dynamics. Model calculations are used to demonstrate how the EFR-TG signal phase yields unique information on transient material resonances located outside the laser pulse spectrum. This effect can be rationalized in that the real and imaginary parts of the nonlinear polarization are related by the Kramers-Kronig transformation, which allows the dispersive component of the polarization response to exhibit spectral sensitivity over a larger frequency range than that defined by the absorption bandwidth.  相似文献   

12.
Based on analysis of the electronic absorption spectra and study of thin films, we have established the characteristic features of electronic processes involving participation of intermolecular charge transfer processes in crystalline dibenzotetraazaannulene. We have shown that the specific spectral characteristics of this compound are connected with the presence of pre-dimer pairs of molecules in the solid state.L. V. Pisarzhevskii Institute of Physical Chemistry, National Academy of Sciences of Ukraine, 31 Nauki Prospekt, Kiev 252039, Ukraine. Translated from Teoreticheskaya i Éksperimertal'naya Khimiya, Vol. 32, No. 3, pp. 163–167, May–June, 1996. Original article submitted July 4, 1995.  相似文献   

13.
A recently proposed partitioned density functional (DF) approximation (Phys. Rev. E 2003, 68, 061201) and an adjustable parameter-free version of a Lagrangian theorem-based DF approximation (LTDFA: Phys. Lett. A 2003, 319, 279) are combined to propose a DF approximation for nonuniform Lennard-Jones (LJ) fluid. Predictions of the present DF approximation for local LJ solvent density inhomogeneity around a large LJ solute particle or hard core Yukawa particle are in good agreement with existing simulation data. An extensive investigation about the effect of solvent bath temperature, solvent-solute interaction range, solvent-solute interaction magnitude, and solute size on the local solvent density inhomogeneity is carried out with the present DF approximation. It is found that a plateau of solvent accumulation number as a function of solvent bath bulk density is due to a coupling between the solvent-solute interaction and solvent correlation whose mathematical expression is a convolution integral appearing in the density profile equation of the DF theory formalism. The coupling becomes stronger as the increasing of the whole solvent-solute interaction strength, solute size relative to solvent size, and the closeness to the critical density and temperature of the solvent bath. When the attractive solvent-solute interaction becomes large enough and the bulk state moves close enough to the critical temperature of the solvent bath, the maximum solvent accumulation number as a function of solvent bath bulk density appears near the solvent bath critical density; the appearance of this maximum is in contrast with a conclusion drawn by a previous investigation based on an inhomogeneous version of Ornstein-Zernike integral equation carried out only for a smaller parameter space than that in the present paper. Advantage of the DFT approach over the integral equation is discussed.  相似文献   

14.
The most populated structure of tetrahydrofuran (THF) has been investigated in our previous study using electron momentum spectroscopy (EMS). Because of the relatively low impact energy (600 eV) and low energy resolution (DeltaE = 1.20 eV) in the previous experiment, only the highest occupied molecular orbital (HOMO) of THF was investigated. The present study reports the most recent high-resolution EMS of THF in the valence space for the first time. The binding energy spectra of THF are measured at 1200 and 2400 eV plus the binding energies, respectively, for a series of azimuthal angles. The experimentally obtained binding energy spectra and orbital momentum distributions (MDs) are employed to study the orbital responses of the pseudorotation motion of THF. The outer valence Greens function (OVGF), the OVGF/6-311++G** model, and density function theory (DFT)-based SAOP/et-pVQZ model are employed to simulate the binding energy spectra. The orbital momentum distributions (MDs) are produced using the DFT-based B3LYP/aug-cc-pVTZ model, incorporating thermodynamic population analysis. Good agreement between theory and experiment is achieved. Orbital MDs of valence orbitals exhibit only slight differences with respect to the impact energies at 1200 and 2400 eV, indicating validation of the plane wave impulse approximation (PWIA). The present study has further discovered that the orbital MDs of the HOMO in the low-momentum region (p < 0.70 a.u) change significantly with the pseudorotation angle, phi, giving a v-shaped cross section, whereas the innermost valence orbital of THF does not vary with pseudorotation, revealing a very different bonding mechanism from the HOMO. The present study explores an innovative approach to study pseudorotation of sugar puckering, which sheds a light to study other biological systems with low energy barriers among ring-puckering conformations.  相似文献   

15.
We present a new approach that combines electronic structure methods and molecular dynamics simulations to investigate the infrared spectroscopy of condensed phase systems. This approach is applied to the OH stretch band of dilute HOD in liquid D2O and the OD stretch band of dilute HOD in liquid H2O for two commonly employed models of water, TIP4P and SPC/E. Ab initio OH and OD anharmonic transition frequencies are calculated for 100 HOD x (D2O)n and HOD x(H2O)n (n = 4-9) clusters randomly selected from liquid water simulations. A linear empirical relationship between the ab initio frequencies and the component of the electric field from the solvent along the bond of interest is developed. This relationship is used in a molecular dynamics simulation to compute frequency fluctuation time-correlation functions and infrared absorption line shapes. The normalized frequency fluctuation time-correlation functions are in good agreement with the results of previous theoretical approaches. Their long-time decay times are 0.5 ps for the TIP4P model and 0.9 ps for the SPC/E model, both of which appear to be somewhat too fast compared to recent experiments. The calculated line shapes are in good agreement with experiment, and improve upon the results of previous theoretical approaches. The methods presented are simple, and transferable to more complicated systems.  相似文献   

16.
17.
18.
We investigate the role played by the coordination state of pre-existing water wires during the dissociation of moderately strong acids by means of first-principles molecular dynamics calculations. By preparing 2,4,6-tricyanophenol (calc. pKa~0.5) in two different initial states, we are able to observe sequential as well as concerted trajectories of dissociation: On one hand, equilibrium dissociation takes place on a ~50 ps timescale; proton conduction occurs through three-coordinated water wires in this case, by means of sequential Grotthus hopping. On the other hand, by preparing 2,4,6-tricyanophenol in a hydration state inherited from that of equilibrated phenol (calc. pKa=7.6), the moderately strong acid finds itself in a presolvated state from which dissociation can take place on a ~1 ps timescale. In this case, concerted dissociation trajectories are observed, which consist of proton translocation through two intervening, four-coordinated, water molecules in 0.1-1.0 ps. The present results suggest that, in general, the mechanism of proton translocation depends on how the excess proton is injected into a hydrogen bond network. In particular, if the initial conditions favour proton release to a fourfold H-bonded water molecule, proton translocation by as much as 6-8 A? can take place on a sub-picosecond timescale.  相似文献   

19.
20.
The possibility of obtaining thermodynamic parameters from solid—solid interaction reactions in the formation of charge-transfer (CT) complexes has been studied carrying out the syntheses directly in a DSC apparatus. The interactions between the donor p-bromophenol and the acceptors p-benzoquinone, chloranyl and bromanyl have been considered. It was observed that the solid—solid interaction occurs only for the system p-bromophenol:p-benzoquinone; for the system p-bromophenol:bromanyl the reaction occurs in the molten donor; the acceptor chloranyl does not react.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号