首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Himei Y  Qiu J  Nakajima S  Sakamoto A  Hirao K 《Optics letters》2004,29(23):2728-2730
Novel optical attenuation fibers were fabricated by the irradiation of a focused infrared femtosecond pulsed laser onto the core of a silica glass single-mode optical fiber. Optical attenuation at a wavelength of 1.55 microm proportionally increased with increasing numbers of irradiation points and was controllable under laser irradiation conditions. The single-mode property of the waveguide and the mode-field diameter of the optical fiber were maintained after irradiation of the femtosecond laser. It is suggested that the attenuation results from optical scattering at photoinduced spots formed inside the fiber core.  相似文献   

2.
Optical waveguide writing with a diode-pumped femtosecond oscillator   总被引:1,自引:0,他引:1  
Optical waveguide writing is demonstrated by means of a diode-pumped cavity-dumped Yb:glass femtosecond laser oscillator with a pulse energy of 270 nJ at a 166-kHz repetition rate. Waveguides realized on an Er:Yb-doped phosphate glass are almost perfectly mode matched to standard single-mode fibers at 1.55 microm and show a 1.2-dB net gain in a standard telecommunications amplifier setup. Waveguide writing with a compact femtosecond laser oscillator is an important step toward introducing this technique into an industrial context.  相似文献   

3.
Ultrawide tunable Er soliton fiber laser amplified in Yb-doped fiber   总被引:3,自引:0,他引:3  
A Raman-shifted and frequency-doubled high-power Er-fiber soliton laser for seeding an efficient high-power Yb fiber femtosecond amplifier is demonstrated. The Raman-shifted and frequency-doubled Er-soliton laser is tunable from 1.00 to 1.070microm and produces bandwidth-limited 24-pJ pulses at a repetition rate of 50 MHz with a FWHM pulse width of 170 fs at 1.040microm . The Yb(3+) amplifier has a slope efficiency of 52% and generates 3-ps linearly chirped pulses with an average power of 0.8 W at 1.05microm . After pulse compression, 74-fs bandwidth-limited pulses with an average power of 0.4 W and a pulse energy of 8 nJ are generated.  相似文献   

4.
Amplification of femtosecond pulses at 1.56 microm based on noncollinear parametric chirped pulse amplification in a potassium titanyl arsenate (KTA) crystal with pumping at 1.05 microm is reported. The 100 fs pulses of an erbium fiber laser are parametrically amplified while synchronously pumped by an amplified mode-locked Nd:YLF laser. This amplifier has a saturated gain of 65 dB with 30% conversion efficiency and has produced 160 fs pulses with peak powers of up to 0.75 GW. The system produced 380 mW before compression and can be readily scaled to the multiwatt range with bandwidths to support sub-100 fs pulses.  相似文献   

5.
We report significant enhancement (+24 dB) of the optical beat note between a 657 nm cw laser and the second-harmonic generation of the tailored continuum at 1314 nm generated with a femtosecond Cr:forsterite laser and a nonlinear fiber Bragg grating. The same continuum is used to stabilize the carrier-envelope offset frequency of the Cr:forsterite femtosecond laser and permits improved optical stabilization of the frequency comb from 1.0 to 2.2 microm. Using a common optical reference at 657 nm, a relative fractional frequency instability of 2.0 x 10(-15) is achieved between the repetition rates of Cr:forsterite and Ti:sapphire laser systems in 10 s averaging time. The fractional frequency offset between the optically stabilized frequency combs of the Cr:forsterite and Ti:sapphire lasers is +/-(0.024 +/- 6.1) x 10(-17).  相似文献   

6.
A femtosecond all-fiber laser source incorporating a cw mode-locked Yb-doped silica fiber oscillator and amplifier has been used to synchronously pump an optical parametric oscillator based on periodically poled lithium niobate. The signal output, consisting of 330-fs pulses at a 54-MHz repetition rate and average powers up to 90 mW, was tuned from 1.55 to 1.95microm , with a corresponding idler range of 2.30-3.31microm .  相似文献   

7.
We link the output spectra of a Ti:sapphire and a Cr:forsterite femtosecond laser phase coherently to form a continuous frequency comb with a wavelength coverage of 0.57-1.45 microm at power levels of 1 nW to 40 microW per frequency mode. To achieve this, the laser repetition rates and the carrier-envelope offset frequencies are phase locked to each other. The coherence time between the individual components of the two combs is 40 micros. The timing jitter between the lasers is 20 fs. The combined frequency comb is self-referenced for access to its overall offset frequency. We report the first demonstration to our knowledge of an extremely broadband and continuous, high-powered and phase-coherent frequency comb from two femtosecond lasers with different gain media.  相似文献   

8.
We present results from what we believe is the first reported example of an optical parametric oscillator based on periodically poled RbTiOAsO(4). The oscillator is pumped by a femtosecond self-mode-locked Ti:sapphire laser and, with a single-grating 2-mm-long crystal and one mirror set, a combination of pump and cavity-length tuning provided wavelength coverage from 1060 to 1225nm (signal) and 2.67 to 4.5 microm (idler). Average output powers were as much as 120mW in the signal and 105mW in the idler and interferometric autocorrelations recorded at signal and idler wavelengths of 1.1 and 3.26 microm, respectively, imply pulse durations of 125 and 115fs, respectively.  相似文献   

9.
Zhou K  Chen X  Lai Y  Sugden K  Zhang L  Bennion I 《Optics letters》2008,33(15):1650-1652
A 1.2 microm (height) x 125 microm (depth) x 500 microm (length) microslot along a fiber Bragg grating was engraved across the optical fiber by femtosecond laser patterning and chemical etching. By filling epoxy in the slot and subsequent UV curing, a hybrid waveguide grating structure with a polymer core and glass cladding was fabricated. The obtained device is highly thermally responsive with linear coefficient of 211 pm/ degrees C.  相似文献   

10.
We demonstrate optical clockwork without the need for carrier-envelope phase control by use of sum-frequency generation between a continuous-wave optical parametric oscillator at 3.39 microm and a femtosecond mode-locked Ti:sapphire laser with two strong spectral peaks at 834 and 670 nm, a spectral difference matched by the 3.39-microm radiation.  相似文献   

11.
We combined a tunable continuous-wave optical parametric oscillator and a femtosecond Ti:sapphire laser frequency comb to provide a phase-coherent bridge between the visible and the mid-infrared spectral ranges. As a first demonstration of this new technique we performed a direct frequency comparison between an iodine-stabilized Nd:YAG laser at 1064 nm and an infrared methane optical frequency standard at 3.39 microm.  相似文献   

12.
A mid-infrared supercontinuum (SC) is generated in ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF...) fluoride fibers from amplified nanosecond laser diode pulses with a continuous spectrum from approximately 0.8 microm to beyond 4.5 microm. The SC has an average power of approximately 23 mW, a pump-to-SC power conversion efficiency exceeding 50%, and a spectral power density of approximately -20 dBm/nm over a large fraction of the spectrum. The SC generation is initiated by the breakup of nanosecond laser diode pulses into femtosecond pulses through modulation instability, and the spectrum is then broadened primarily through fiber nonlinearities in approximately 2-7 m lengths of ZBLAN fiber. The SC long-wavelength edge is consistent with the intrinsic ZBLAN material absorption.  相似文献   

13.
Sun JH  Gale BJ  Reid DT 《Optics letters》2007,32(11):1414-1416
A repetition-rate-stabilized frequency comb ranging from the violet to the mid-infrared (0.4-2.4 microm) is obtained by phase locking a femtosecond Ti:sapphire laser and a synchronously pumped optical parametric oscillator to a common supercontinuum reference. The locking results have bandwidths lower than 3 kHz. By changing the locking frequencies, different relative and absolute offsets of the constituent frequency combs are achievable.  相似文献   

14.
Ultraviolet and infrared conical emissions were observed during the filamentation in air of powerful femtosecond laser pulses produced by a portable terawatt laser system. The broadband spectrum was measured from 200 nm up to 14 microm and covered the complete optical transmission window of the atmosphere. The angularly resolved spectrum showed some X-wave structure across the frequency range analyzed. However, we demonstrated that the strong conical emission observed in the mid- and far-infrared is mainly owing to the four-wave mixing between the pump pulse and its blueshifted conical emission.  相似文献   

15.
We report on a new spatial beam-shaping approach for fabrication of waveguides with a circular transverse profile by femtosecond laser pulses, using an astigmatic beam and controlling both beam waist and focal position in the tangential and sagittal planes. We apply this technique to write single-mode active waveguides at 1.5microm in Er:Yb-doped glass substrates. The experimental results are well described by a simple nonlinear absorption model.  相似文献   

16.
Li G  Winick KA  Said AA  Dugan M  Bado P 《Optics letters》2006,31(6):739-741
An integrated electro-optic waveguide modulator is demonstrated in bulk fused silica. A Mach-Zehnder interferometer waveguide structure is fabricated by direct writing with a femtosecond laser followed by thermal poling. A 20 degrees electro-optic phase shift is achieved at an operating wavelength of 1.55 microm with an applied voltage of 400 V and an interaction length of 25.6 mm, which correspond to an estimated effective electro-optic coefficient of 0.17 pm/V for the TE-polarized mode.  相似文献   

17.
We report on the power scaling to 103 W of a 1.1 microm continuous-wave Yb(3+)-doped silica fiber laser incorporating a point-by-point (PbP) fiber-Bragg grating inscribed directly into the active core using 800 nm femtosecond laser pulses. The spectrum of the laser exhibited a narrow linewidth that broadened to 260 pm at 103 W. The output was frequency doubled using an 11 mm long periodically poled MgO:LiNbO3 crystal to generate 2.1 W of green with an internal conversion efficiency of 10% at high power and 0.81%/W at low power.  相似文献   

18.
19.
An original femtosecond Cr(4+):forsterite laser source associated with a nonlinear optical correlator was used for imaging through scattering media with 1220-nm light. The system, which operates as an ultrafast optical gate by sum-frequency generation in a nonlinear crystal, was able to detect the light reflected from a resolution chart hidden in a turbid medium, at an attenuation of as much as 15 mean free paths. When the object was illuminated with a collimated beam, real-time two-dimensional images were obtained, with a maximum transverse resolution of ~20 microm.  相似文献   

20.
A frequency comb is generated with a chromium-doped forsterite femtosecond laser, spectrally broadened in a dispersion-shifted highly nonlinear fiber, and stabilized. The resultant evenly spaced comb of frequencies ranges from 1.1 to beyond 1.8 microm. The frequency comb was referenced simultaneously to the National Institute of Standards and Technology's optical frequency standard based on neutral calcium and to a hydrogen maser that is calibrated by a cesium atomic fountain clock. With this comb we measured two frequency references in the telecommunications band: one half of the frequency of the d/f crossover transition in 87Rb at 780 nm, and the methane v2 + 2v3 R(8) line at 1315 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号