首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanocrystalline Ni-substituted Zn ferrites with compositions of NixZn1?xFe2O4 (x = 0–1.0) were synthesized by sol–gel auto-combustion method using metal nitrate as the reactants. Diethanolamine was selected as the fuel instead of conventional fuels such as urea, citric acid, tartaric acid or glycine. Characterization of after-calcined ferrite samples were conducted in terms of crystal structure, molecular vibrations, morphology and magnetic properties through X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscope and vibrating sample magnetometer analysis, respectively. The photocatalytic activities of these ferrites were studied in term of degradation of Rhodamine B under daylight-irradiation. The corresponding results indicate that nickel loading content has significant effect on physical, magnetic, optical and photocatalytic properties of the ferrite. Comparing to the undoped Zn ferrite, Ni0.6Zn0.4Fe2O4 shows the enhancement in photocatalytic activity accompanying the degradation of Rhodamine B aqueous solution up to 77 % within 4 h. The result suggests the feasibility of this material as potential sunlight-activated photocatalyst in wastewater treatment and environment cleaning applications.  相似文献   

2.
Nanocrystalline SnO2 particles have been synthesized by a sol–gel method from the very simple starting material granulated tin. The synthesis leads a sol–gel process when citric acid is introduced in the solution obtained by dissolving granulated tin in HNO3. Citric acid has a great effect on stabilizing the precursor solution, and slows down the hydrolysis and condensation processes. The obtained SnO2 particles range from 2.8 to 5.1 nm in size and 289–143 m2 g−1 in specific surface area when the gel is heat treated at different temperatures. The particles show a lattice expansion with the reduction in particle size. With the absence of citric acid, the precursor hydrolyzes and condenses in an uncontrollable manner and the obtained SnO2 nanocrystallites are comparatively larger in size and broader in size distribution. The nanocrystallites have been characterized by means of TG-DSC, FT-IR, XRD, BET and TEM.  相似文献   

3.
Terbium doped calcium phosphate (Tb-doped CaP) nanocrystalline powders were synthesized by the citric acid sol–gel combustion method. The phase composition, morphology and luminescent property of Tb-doped CaP nanocrystalline powders were characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, fluorescence spectrophotometer and fluorescence microscopy. At 700 °C, Tb-doped CaP nanocrystalline powders are composed of HAP (main phase) and β-TCP (minor phase) with Tb doping content of 0.5–4%. SEM and TEM observations show that the 4% Tb-doped CaP nanocrystalline powders are about 50–150 nm spherical particles. The 4% Tb-doped CaP nanocrystalline powders exhibit the strongest emission at 548 nm (λexcitation = 240 nm) and show strong green fluorescence under fluorescence microscopy.  相似文献   

4.
Journal of Thermal Analysis and Calorimetry - Chemical stability, anticorrosive properties and photocatalytic activity of titanium dioxide (TiO2) are among the most important characteristics for...  相似文献   

5.
6.
Journal of Thermal Analysis and Calorimetry - In this study, cobalt ferrite (CoFe2O4) nanoparticles were synthesized by sol–gel auto-combustion technique in the presence of agarose as a...  相似文献   

7.
We present a facile sol–gel route to synthesize lanthanum-substituted bismuth titanate (BLT). The chemical reactions and crystallization process of this method using the initial materials of bismuth subnitrate [4BiNO3(OH)2·BiO(OH)], lanthanum nitrate [La(NO3)3·6H2O] and tetrabutyl titanate [Ti(C4H9O)4] were investigated by thermogravimetric and differential thermal analysis, IR spectroscopy, gas chromatography/mass spectrometry, Raman spectroscopy and XRD. The evaporation of the dissolved CO2 in the amorphous BLT matrix is associated with the crystallization of BLT. The BLT gel is pure BLT perovskite when calcination temperature is higher than 500 °C. The grain size of the obtained nanoparticles ranges from 15 to 82 nm. The Arrhenius curve is obtained from the representation of the reduced sizes with respect to the calcination temperature. The activation energy of grain growth in BLT nanoparticles is 0.36 eV, which shows a rapidly growth process in the temperature range of 500–850 °C.  相似文献   

8.
In this work, spinel structure MgFe2O4 nano-crystals were synthesized by sol–gel auto-combustion method. Morphology and structure of the synthesized MgFe2O4 material is characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). And its electrochemical properties were investigated at different active material ratio. Galvanostatic charge/discharge and cyclic voltammograms (CVs) measurements show that the electrode with a ratio of 40:40:20, which is the ratio of active material: super-P carbon (SP): polyvinylidene fluoride (PVDF), presents relatively superior performance with the initial discharge capacity of 1,123 mAh g?1 and charge/discharge efficiency of 96.7 %. And after 50 cycles, it still maintains at 635 mAh g?1, which is nearly double that of the other two electrodes with active material ratio of 60:25:15 and 80:15:5. Electrochemical impedance spectra testing shows that the charge transfer resistance (Rct) decreases along with the increasing amount of SP, which is benefit for reducing the polarization and improving the cycling stability of the electrode to a certain extent.  相似文献   

9.
Journal of Sol-Gel Science and Technology - Of all the piezoelectric ceramics, lead titanate (PbTiO3) has an important place as an electromechanical transducer. In the present article PbTiO3...  相似文献   

10.
CaCu3Ti4O12 (CCTO) powders were prepared via a non-hydrolytic sol–gel (NHSG) method by using acetylacetone as chelating agent and ethylene glycol as solvent. The samples were characterized by TG–DSC, Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscope. The dielectric properties of ceramics were also measured. The pure perovskite-like CCTO powders were obtained by heat treatment at 800 °C for 2 h. The average particle sizes of CCTO powders calcined at 800 °C were approximately 350–450 nm. The samples sintered at 1,000 °C showed the mean grain size of 2.5–4 μm. Specially, the ceramics exhibited high dielectric constant (1.19 × 105–1.40 × 105) and low dielectric loss (0.051–0.1) in the temperature range of 30–110 °C. Moreover, with the NHSG method the period of synthesis process was greatly shortened.  相似文献   

11.
Journal of Thermal Analysis and Calorimetry - In the present contribution, the study of nanostuctured powders of Mn2+-doped ZnO with different doping concentration (1, 2, 5 at%) was...  相似文献   

12.
Magnetic nickel ferrite (NiFe2O4) was prepared by sol–gel process and calcined in the 2.45 GHz singlemode microwave furnace to synthesize nickel nanopowder. The sol–gel method was used for the processing of the NiFe2O4 powder because of its potential for making fine, pure and homogeneous powders. Sol–gel is a chemical method that has the possibility of synthesizing a reproducible material. Microwave energy is used for the calcining of this powder and the sintering of the NiFe2O4 samples. Its use for calcination has the advantage of reducing the total processing time and the soak temperature. In addition to the above combination of sol–gel and microwave processing yields to nanoscale particles and a more uniform distribution of their sizes. X-ray diffraction, energy dispersive X-ray spectroscopy, transmission electron microscopy and vibrating sample magnetometer were carried out to investigate structural, elemental, morphological and magnetic aspects of NiFe2O4. The results showed that the mean size and the saturation magnetization of the NiFe2O4 nanoparticles are about 30 nm and 55.27 emu/g, respectively. This method could be used as an alternative to other chemical methods in order to obtain NiFe2O4 nanoparticles.  相似文献   

13.
The reactivity of CeO2 is determined by grain size and oxygen vacancies, which can be achieved by doping elements with less oxidation state into CeO2. In this study nanocrystalline Ca-doped CeO2 sol was synthesized from the reaction of hydrate cerium (III) nitrate and calcium nitrate tetrahydrate in alcohol solution after being calcined at 600?°C. X-ray diffraction as well as selected area electron diffraction gave evidence that the synthesized Ca-doped CeO2 samples were well crystalline and had a cubic fluorite structure. TEM observation revealed that Ca-doped CeO2 was composed by nanoparticles with grain size around 8?nm. The Raman spectrum of pure CeO2 consists of a single triple degenerate F2g model characteristic of the fluorite-like structure. In the Ca-doped CeO2 sample, two additional low-intensity Raman bands were detected, thus confirming the formation of the solid solution. The synthesized nanometric powder is expected to be used in solid oxide fuel cells as well as in the catalytic treatment of automobile exhaust fumes.  相似文献   

14.
Alumina asymmetric ceramic membranes were prepared by sol–gel method. Research on structure of alumina membrane active layer is conducted by methods of physical nitrogen adsorption and small-angle scattering of synchrotron radiation, the obtained data confirms and supplements each other. Surface area for the studied material varies from 255 to 264 m2/g, average pore diameter varies from 5.3 nm to 5.4 nm.  相似文献   

15.
Our goal in this research was to obtain lead oxide nano-powders by sol–gel method. In this method, lead oxide nano-powders were synthesized through the reaction of citric acid (C6H7O8·H2O) solution and lead acetate [Pb(C2H3O2)2] solution as stabilizer and precursor, respectively. The effect of different parameters including calcination temperature, (molar ratio of citric acid to lead acetate) and drying conditions were investigated. The prepared lead oxide nano-powders were characterized by FT-IR spectroscopy, X-ray diffraction, thermogravimetric analysis and scanning electron microscopy. The prepared PbO samples consist of the particles in the range of 50–120 nm or the thick plate like structures with thickness of 53 nm depending on the drying conditions.  相似文献   

16.
Nanostructured aluminum borate was synthesized using sol?Cgel technique. X-ray diffraction study revealed that the synthesized aluminum borate was single crystal. These nanorods have very uniform diameter. High-resolution transmission electron microscope images indicate that aluminum borate is well crystallized. The alternating current (AC) conductivity of the aluminum borate was studied as a function of temperature and frequency. The AC conductivity mechanism of the aluminum borate was found to be proportional to ??s. The exponent s is almost independent with temperature. This suggests that AC conductivity mechanism of the aluminum borate can be interpreted by localized hopping model.  相似文献   

17.
18.
Ruthenium oxide coating on titanium was prepared by the sol–gel procedure from well-defined colloidal oxide dispersions synthesized by the microwave (MW)-assisted hydrothermal route under defined temperature and pressure heating conditions. The dispersions were characterized by dynamic light scattering (DLS) measurements and scanning electron microscopy (SEM). The electrochemical properties were analyzed as capacitive performances gained by cyclic voltammetry and electrochemical impedance spectroscopy and as the electrocatalytic activity for oxygen evolution from acid solution. The obtained dispersions were polydisperse and contained regular particles and agglomerates of increasing surface energy and decreasing particle size as the MW-assisted heating conditions were intensified. Owing to these features of the precursor dispersions, the obtained coatings had considerably improved capacitive performances and good electrocatalytic activity for oxygen evolution at high overpotentials.  相似文献   

19.
Hexagonal BaFe12O19 ferrite (BaM) thin films were prepared on Si (100) substrate successfully by sol–gel technology and post annealing. The results showed the BaM phase can be formed and crystallized into c-axis textured grains even when the Fe/Ba ratio of the precursor varied from 6.5 to 9.5. However, the behavior of the saturation magnetization (M s) and intrinsic coercivity (H c) depended strongly on the Fe/Ba ratio and annealing temperature (T a) varied from 700 to 900 °C. The M s and H c values deceased with an increase of Fe/Ba ratio, for instance, were about 290 emu/cm3 and 4,200 Oe for the Fe/Ba = 6.5 film but only 116 emu/cm3 and 2,300 Oe for the Fe/Ba = 9.5 film. The M s and H c values of the Fe/Ba ratio = 6.5 film increased monotonously with increasing T a, were about 120 emu/cm3 and 2,500 Oe at T a = 800 °C, and reached to 345 emu/cm3 and 4,600 Oe at T a = 950 °C.  相似文献   

20.
The sol–gel method for the mullite synthesis is reviewed, with particular emphasis on the characterization of monophasic and diphasic gels at low, intermediate and high temperatures and the factors that influence the hydrolysis and condensation rate of the sol–gel process, which in turn determine the properties of the final material. A wide range of studies about mullite precursors synthesized via sol–gel is discussed here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号