首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A wire mesh sensor was used to detect the local instantaneous cross-sectional distribution of the phases in gas-liquid slug flow. Data were obtained for a wide range of flow rates and for pipe inclinations ranging from shallow to vertical. Processing of the wire mesh sensor data yielded detailed information of the 3D void fraction distribution in the liquid slug. These results shed additional light on the hydrodynamics of slug flow, in particular, regarding the formation and distribution of dispersed bubbles in the liquid slug. Comparison with available data was carried out. The present results compared favorably with model predictions.  相似文献   

2.
Forced flow and natural circulation void fraction data are presented for steam-water upflow in a 73.9 mm pipe. Nondevelopment apparent in some of the data is due to bubble retardation at a nearby upstream bend. Through the use of suitable approximations, a previous analysis of distributed and annular flow voidage has provided a simple but accurate predictive method for the “developed flow” component of the data.  相似文献   

3.
This paper studies the effects of the initial relative void spacing, void pattern, void shape and void volume fraction on ductile fracture toughness using three-dimensional, small scale yielding models, where voids are assumed to pre-exist in the material and are explicitly modeled using refined finite elements. Results of this study can be used to explain the observed fracture toughness anisotropy in industrial alloys. Our analyses suggest that simplified models containing a single row of voids ahead of the crack tip is sufficient when the initial void volume fraction remains small. When the initial void volume fraction becomes large, these simplified models can predict the fracture initiation toughness (JIc) with adequate accuracy but cannot predict the correct JR curve because they over-predict the interaction among growing voids on the plane of crack propagation. Consequently, finite element models containing multiple rows of voids should be used when the material has large initial void volume fraction.  相似文献   

4.
5.
The structure of vertical upward slug flow in a pipe is studied. The distribution of the phases in the Taylor bubble zone and the liquid slug zone is investigated by simultaneous measurements with two optical fiber probes. In the Taylor bubble zone the shape of the Taylor bubble and the distribution of the bubble length is reported. In the liquid slug region, the distribution of the void fraction is obtained over a dense grid in both the axial and radial directions. These experimental results shed some light on the hydrodynamics of the two-phase slug flow, in particular regarding the production of the dispersed bubbles and their distribution along the liquid slug.  相似文献   

6.
Two novel complementing methods that enable experimental study of gas and liquid phases distribution in two-phase pipe flow are considered. The first measuring technique uses a wire-mesh sensor that, in addition to providing data on instantaneous phase distribution in the pipe cross-section, also allows measuring instantaneous propagation velocities of the phase interface. A novel algorithm for processing the wire-mesh sensor data is suggested to determine the instantaneous boundaries of gas–liquid interface. The second method applied here takes advantage of the existence of sharp visible boundaries between the two phases. This optical instrument is based on a borescope that is connected to a digital video camera. Laser light sheet illumination makes it possible to obtain images in the illuminated pipe cross-section only. It is demonstrated that the wire-mesh-derived results based on application of the new algorithm improve the effective spatial resolution of the instrument and are in agreement with those obtained using the borescope. Advantages and limitations of both measuring techniques for the investigations of cross-sectional instantaneous phase distribution in two-phase pipe flows are discussed.  相似文献   

7.
8.
Experiments with refrigerant two-phase flow in a horizontal pipe have been performed and data on flow pattern, void fraction and pressure drop have been obtained. Refrigerants used were R12 and R22, and the range of saturation pressure was from 5.7 to 19.6 bar.In this paper, the experimental equipment and procedure are described in detail, and the data are both tabulated and presented graphically.  相似文献   

9.
The void fraction in liquid slugs has been determined for air—water fiow in horizontal and near-horizontal pipes by a newly-developed conductance probe technique. A semi-empirical correlation has been developed and compared with the present measurements and available data. This correlation predicts reasonably well the observed effects of diameter, inclination and physical properties.  相似文献   

10.
11.
In this work, the use of the area-averaged void fraction and bubble chord length entropies is introduced as flow regime indicators in two-phase flow systems. The entropy provides quantitative information about the disorder in the area-averaged void fraction or bubble chord length distributions. The CPDF (cumulative probability distribution function) of void fractions and bubble chord lengths obtained by means of impedance meters and conductivity probes are used to calculate both entropies. Entropy values for 242 flow conditions in upward two-phase flows in 25.4 and 50.8-mm pipes have been calculated. The measured conditions cover ranges from 0.13 to 5 m/s in the superficial liquid velocity j f and ranges from 0.01 to 25 m/s in the superficial gas velocity j g. The physical meaning of both entropies has been interpreted using the visual flow regime map information. The area-averaged void fraction and bubble chord length entropies capability as flow regime indicators have been checked with other statistical parameters and also with different input signals durations. The area-averaged void fraction and the bubble chord length entropies provide better or at least similar results than those obtained with other indicators that include more than one parameter. The entropy is capable to reduce the relevant information of the flow regimes in only one significant and useful parameter. In addition, the entropy computation time is shorter than the majority of the other indicators. The use of one parameter as input also represents faster predictions.  相似文献   

12.
A hydraulic jump is a sudden transition from supercritical to subcritical flow. It is characterized by a highly turbulent roller region with a bubbly two-phase flow structure. The present study aims to estimate the void fraction in a hydraulic jump using a flow visualization technique. The assumption that the void fraction in a hydraulic jump could be estimated based on images’ pixel intensity was first proposed by Mossa and Tolve (J Fluids Eng 120:160–165, 1998). While Mossa and Tolve (J Fluids Eng 120:160–165, 1998) obtained vertically averaged air concentration values along the hydraulic jump, herein we propose a new visualization technique that provides air concentration values in a vertical 2-D matrix covering the whole area of the jump roller. The results obtained are found to be consistent with new measurements using a dual-tip conductivity probe and show that the image processing procedure (IPP) can be a powerful tool to complement intrusive probe measurements. Advantages of the new IPP include the ability to determine instantaneous and average void fractions simultaneously at different locations along the hydraulic jump without perturbing the flow, although it is acknowledged that the results are likely to be more representative in the vicinity of sidewall than at the center of the flume.  相似文献   

13.
Two-phase flow in horizontal pipe was analyzed with simplified models for annular and stratified flow. The velocity profiles for the liquid and gas phase were described with the Prandtl mixing length. From this analysis, the frictional pressure drop was calculated with the modified Baker map for flow pattern transition. The intermediate region, i.e. wavy flow, was interpolated between annular and stratified flow. Comparison of this analysis with existing experimental data of refrigerants showed good agreement.  相似文献   

14.
An experimental and theoretical study of a finite amplitude pressure wave propagating through a two-phase media of about 0.9999–0.99999 void fraction is performed. This two-phase media consists of many parallel liquid films in a gas. The films are perpendicular to the wave propagation direction and result in a two-phase fluid of extremely high void fraction. Experiments are done in a vertical shock tube and show that the shock wave is broken down into an initial sharply rising wave and a second gradually rising wave. The velocity of the first wave agrees well with the theoretical prediction assuming an adiabatic thermal equilibrium change, which approaches the gas sonic velocity in the two-phase flow in the low void fraction region. The second wave is caused by the complex reflection and destruction of the waves.  相似文献   

15.
It is known that bubble size affects seriously the average void fraction in bubbly flows where buoyant velocities vary considerably with bubble size. On the contrary, there is no systematic literature report about bubble size effects on the intensity and frequency of void fraction fluctuations around the average void fraction. This work aims to provide such information. An electrical impedance technique is employed along with non-intrusive ring electrodes to register void fraction fluctuations down to 10−5. Bubble size fluctuations are estimated from high resolution optical images. Experiments are conducted in co-current upward dispersed bubble flow inside a 21 mm tube with average bubble size between ∼50 and ∼700 μm. Water and blood simulant are used as test liquids with velocity from ∼3 to ∼30 cm s−1. The above resemble conditions of Decompression Sickness (DCS) in the bloodstream of human vena cava. It is found that the intensity and frequency of void fraction fluctuations vary appreciably with bubble size at constant gas and liquid flow rates. Moreover, these variations are not random but scale with bubble size. As a first step to quantify this effect, an empirical expression is derived that relates average bubble size to the ratio standard deviation/average value of void fraction.  相似文献   

16.
Void fraction measurements were made using capacitance method. Five capacitor configurations were manufactured and tested; parallel, strip-type plates, ring-type plates, unidirectional, and double-helix. The void fraction was simulated by nonflow air-paraffin wax, air-glass, air-wood, and air-Freon 113 systems. The relative statistical error in void fraction measurement was minimized by taking into account the spacing between the ends of the two electrodes.  相似文献   

17.
We study the relationship between the surface mechanical load represented by distributed acoustic impedance and the current density distribution in a shear mode piezoelectric plate acoustic wave resonator. A theoretical analysis based on the theory of piezoelectricity and trigonometric series is performed. In the specific and basic case when the surface load is due to a local mass layer, numerical results show that the current density concentrates under the mass layer and is sensitive to the phy...  相似文献   

18.
A method for measuring the instantaneous 3-D bubble distribution in bubbly flows is proposed by making use of stereoscopic image processing. The method applies to the case of higher rather than dilute void fractions, because it is based on the following two statistic-based procedures. The first process is to obtain the 2-D distribution of local void fraction from visualized images, where a correlation between the bubble shadow fraction and the projection void fraction is derived by introducing the new idea of overlapping probability of the bubble-images under various conditions. The second process is to reconstruct the 3-D distribution of the local void fraction. In this step, a logical method is proposed in order to obtain the bubble-existence probability function which simultaneously satisfies the two distributions of the two projection void fractions. The present method is applied for instantaneous measurement of the 3-D structure of a bubble plume. The measured results show its particular structure, such as the hollow distribution of the bubbles, and the local spiral structure, which cannot be captured by point-measurement experiments. Received: 5 January 1999/Accepted: 3 February 2000  相似文献   

19.
 A technique has been developed to measure void fraction using X-rays in a 10 cm thick pool of molten tin with gas injection at various flow rates. Visualization of the multiphase mixture using high energy X-rays can be performed at imaging rates of 220 fps with 256×256 pixel resolution or at 30 fps with 480×1128 pixel resolution. The images are subsequently processed to obtain two dimensional distributions of the chordal average void fraction in the mixture. The estimated relative uncertainty of the measurement is discussed in detail and shown to be of the order of 10% of the reported value. Received: 6 June 1997/Accepted: 2 December 1997  相似文献   

20.
In acoustic cavitation, the relationship between the bubble dynamics on the microscale and the flow properties on the macroscale is critical in determining sonochemical reaction kinetics. A new technique was developed to measure the void fraction and estimate water mobility in the vicinity of cavitating bubbles using phase-encoded magnetic resonance imaging with short characteristic measurement timescales (0.1–1 ms). The exponential behavior of the NMR signal decay indicated the fast diffusion regime, with the relationship between local mechanical dispersion D mix and the average bubble radius R, Dmix >> \frac2R210-4s, D_{\rm mix}\gg \frac{2R^2}{10^{-4}\hbox{s}}, resulting in dispersion of orders of magnitude greater than diffusion in quiescent water. For two different samples (water and a surfactant solution), the independent measurements of three-dimensional void fraction and velocity fields permitted the calculation of compressibility, divergence and vorticity of the cavitating medium. The measured dynamics of the dissolved gas, compared with that of the surrounding liquid, reflected the difference in the bubble coalescence and lifetimes and correlated with the macroscopic flow parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号