首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The applicability of newly synthesized squarylium dye Sq to probing the changes in physical characteristics of lipid bilayer on the formation of protein-lipid complexes has been evaluated. Lipid vesicles composed of zwitterionic phospholipid phosphatidylcholine (PC) and its mixtures with positively charged detergent cetyltrimethylammonium bromide (CTAB), anionic phospholipid cardiolipin (CL), and cholesterol (Chol) were employed as lipid component of model membrane systems while protein constituent was represented by lysozyme (Lz). Fluorescence intensity of Sq was found to decrease on Lz association with lipid bilayer. This effect was observed in all kinds of model systems suggesting that Sq is sensitive to modification of lipid bilayer physical properties on hydrophobic protein-lipid interactions. It was found that Sq spectral response to variations in Chol content depends on relative contributions of electrostatic and hydrophobic components of Lz-membrane binding.  相似文献   

2.
The potential of novel benzanthrone aminoderivatives to trace the changes in physicochemical properties of lipid bilayer has been evaluated. Binding of the dyes to the lipid bilayers composed of zwitterionic phospholipid phosphatidylcholine (PC) and its mixtures with anionic phospholipid cardiolipin (CL) and cholesterol (Chol) was followed by significant quantum yield increase with small blue shift of emission maximum. Analysis of partition coefficients of the dyes under study showed that all aminobenzanthrones possess high lipid-associating ability. The dyes A8 and AM2 proved to be sensitive to the variations in membrane chemical composition responding to the changes in bilayer hydration induced by CL and Chol.  相似文献   

3.
The present study was undertaken to evaluate the membrane-associating properties of a series of novel antitumor agents, Eu(III) coordination complexes (EC), using the pyrene fluorescence quenching as an analytical instrument. Analysis of EC-induced decrease in pyrene fluorescence intensity in terms of partition and solubility-diffusion models allowed us to evaluate the partition and permeation coefficients of the examined compounds into the lipid vesicles prepared from zwitterionic lipid phosphatidylcholine (PC) and its mixtures with cholesterol (Chol) and anionic lipid cardiolipin (CL). The drug-lipid interactions were found to have the complex nature determined by both EC structure and lipid bilayer composition. High values of the obtained partition and permeation coefficients create the background for the development of EC liposomal formulations.  相似文献   

4.
The effect of enzymes: lipase from Candida cylindracea (LCc), phospholipase A2 from hog pancreas (PLA2) and phospholipase C from Bacillus cereus (PLC) to modulate wetting properties of solid supported phospholipid bilayers was studied via advancing and receding contact angle measurements of water, formamide and diiodomethane, and calculation of the surface free energy and its components from van Oss et al. (LWAB) and contact angle hysteresis (CAH) approaches. Simultaneously, topography of the studied layers was determined by Atomic Force Microscopy (AFM). The investigated lipid bilayers were transferred on mica plates from subphase of pure water by means of Langmuir-Blodgett and Langmuir-Schaefer techniques. The investigated phospolipid layers were: saturated DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine), unsaturated DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine), and their mixture DPPC/DOPC. The obtained results revealed that the lipid membrane degradation by the enzymes caused increase in its surface free energy due to the amphiphilic hydrolysis products, which may accumulate in the lipid bilayer. In result activity of the enzymes may increase and then break down the bilayer structure takes place. It is likely that after dissolution of the hydrolysis reaction products in the bulk phase, patches of bare mica surface are accessible, which contribute to the apparent surface free energy changes. Comparison of AFM images and the free energy changes of the layers gives better insight into changes of their properties. The observed gradual increase in the layer surface free energy allows controlling of the hydrolysis process to obtain the surfaces of defined properties.  相似文献   

5.
The applicability of the two newly commercial available squaraine labels Square-670-NHS and Seta-635-NHS to exploring protein-lipid interactions has been evaluated. The labels were conjugated to lysozyme (Lz) (squaraine-lysozyme conjugates below referred to as Square-670-Lz and Seta-635-Lz), a structurally well-characterized small globular protein displaying the ability to interact both, electrostatically and hydrophobically with lipids. The lipid component of the model systems was represented by lipid vesicles composed of zwitterionic lipids egg yolk phosphatidylcholine (PC) and 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), and their mixtures with anionic lipids either beef heart cardiolipin (CL) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG), respectively. Fluorescence intensity of Square-670-Lz was found to decrease upon association with lipid bilayer, while the fluorescence intensity of Seta-635-Lz displayed more complex behavior depending on lipid-to-protein molar ratio. Covalent coupling of squaraine labels to lysozyme exerts different influence on the properties of dye-protein conjugate. It was suggested that Square-670-NHS covalent attachment to Lz molecule enhances protein propensity for self-association, while squaraine label Seta-635-NHS is sensitive to different modes of lysozyme-lipid interactions—within the L:P range 6–11, when hydrophobic protein-lipid interactions are predominant, an aggregation of membrane-bound protein molecules takes place, thereby decreasing the fluorescence intensity of Seta-635-Lz. At higher L:P values (from 22 to 148) when electrostatic interactions are enhanced fluorescence intensity of Seta-635-Lz increases with increasing lipid concentrations.  相似文献   

6.
The calcium-ion indicator dye, Calcium Green 1 (CG-1), has been characterized using a combination of ensemble and single-molecule optical spectroscopy measurements. In terms of ensemble measurements, CG-1 demonstrated a strong increase in fluorescence emission as a function of increasing [Ca2+]. This was accompanied by a change in the relative proportions of two chemical forms of the dye, each with a different fluorescence lifetime, which were found to co-exist in solution. From single-molecule fluorescence measurements, it was found that the fluorescence intensity and photobleaching time (on-time) of each CG-1 molecule was invariant with [Ca2+] and that changes in ensemble fluorescence intensity simply correlates with the number of fluorescent molecules in solution. These results are compared with that of the related system, Calcium Green 2 (CG-2), and the mechanisms of operation of these two indicator dyes are discussed.  相似文献   

7.
Lipid bilayers have been largely used as model systems for biological membranes. Hence, their structures, and alterations caused on them by biological active molecules, have been the subject of many studies. Accordingly, fluorescent probes incorporated into lipid bilayers have been extensively used for characterizing lipid bilayer fluidity and/or polarity. However, for the proper analysis of the alterations undergone by a membrane, a comprehensive knowledge of the fluorescent properties of the probe is fundamental. Therefore, the present work compares fluorescent properties of a relative new fluorescent membrane probe, 2-amino-N-hexadecyl-benzamide (Ahba), with the largely used probe 6-dodecanoyl-N,N-dimethyl-2-naphthylamine (Laurdan), using both static and time resolved fluorescence. Both Ahba and Laurdan have the fluorescent moiety close to the bilayer surface; Ahba has a rather small fluorescent moiety, which was shown to be very sensitive to the bilayer surface pH. The main goal was to point out the fluorescent properties of each probe that are most sensitive to structural alterations on a lipid bilayer. The two probes were incorporated into bilayers of the well-studied zwitterionic lipid dimyristoyl phosphatidylcholine (DMPC), which exhibits a gel-fluid transition around 23 °C. The system was monitored between 5 and 50 °C, hence allowing the study of the two different lipid structures, the gel and fluid bilayer phases, and the transition between them. As it is known, the fluorescent emission spectrum of Laurdan is highly sensitive to the bilayer gel-fluid transition, whereas the Ahba fluorescence spectrum was found to be insensitive to changes in bilayer structure and polarity, which are known to happen at the gel-fluid transition. However, both probes monitor the bilayer gel-fluid transition through fluorescence anisotropy measurements. With time-resolved fluorescence, it was possible to show that bilayer structural variations can be monitored by Laurdan excited state lifetimes changes, whereas Ahba lifetimes were found to be insensitive to bilayer structural modifications. Through anisotropy time decay measurements, both probes could monitor structural bilayer changes, but the limiting anisotropy was found to be a better parameter than the rotational correlation time. It is interesting to have in mind that the relatively small fluorophore of Ahba (o-Abz) could possibly be bound to a phospholipid hydrocarbon chain, not disturbing much the bilayer packing and being a sensitive probe for the bilayer core.  相似文献   

8.
Recent studies have revealed the importance of the lipid micro domain for signal transduction in cell membrane. To analyze the biophysical properties of the lipid micro domain at the single molecule level, we measured the diffusion of fluorescence probe in human red blood cell (RBC) membrane using fluorescence correlation spectroscopy (FCS). The value of diffusion constant of octadecyl rhodamine B chloride (R18), D = 4.7 × 10−9cm2/s, is close to that of phospholipid molecules in membrane. This indicates that the probed RBC with R18 could be a convenient model for analyzing membrane property under natural conditions. Using this model, we investigated how amyloid beta peptide (A-beta) interacts with plasma membrane. This paper demonstrates that A-beta was inserted into the phospholipid bilayer of the RBC membrane and predicts the existence of the micro domain, lipid raft, on this membrane by the heterologous insertion of A-beta.  相似文献   

9.
The presence of integral membrane proteins induces the formation of distinct domains in the lipid bilayer portion of biological membranes. Qualitative application of both continuous wave (CW) and saturation recovery (SR) electron paramagnetic resonance (EPR) spin-labeling methods allowed discrimination of the bulk, boundary, and trapped lipid domains. A recently developed method, which is based on the CW EPR spectra of phospholipid (PL) and cholesterol (Chol) analog spin labels, allows evaluation of the relative amount of PLs (% of total PLs) in the boundary plus trapped lipid domain and the relative amount of Chol (% of total Chol) in the trapped lipid domain (Raguz et al. Exp Eye Res 140:179–186, 24). Here, a new method is presented that, based on SR EPR spin-labeling, allows quantitative evaluation of the relative amounts of PLs and Chol in the trapped lipid domain of intact membranes. This new method complements the existing one, allowing acquisition of more detailed information about the distribution of lipids between domains in intact membranes. The methodological transition of the SR EPR spin-labeling approach from qualitative to quantitative is demonstrated. The abilities of this method are illustrated for intact cortical and nuclear fiber cell plasma membranes from porcine eye lenses. Statistical analysis (Student’s t test) of the data allowed determination of the separations of mean values above which differences can be treated as statistically significant (P ≤ 0.05) and can be attributed to sources other than preparation/technique.  相似文献   

10.
The highly hydrophobic fluorophore Laurdan (6-dodecanoyl-2-(dimethylaminonaphthalene)) has been widely used as a fluorescent probe to monitor lipid membranes. Actually, it monitors the structure and polarity of the bilayer surface, where its fluorescent moiety is supposed to reside. The present paper discusses the high sensitivity of Laurdan fluorescence through the decomposition of its emission spectrum into two Gaussian bands, which correspond to emissions from two different excited states, one more solvent relaxed than the other. It will be shown that the analysis of the area fraction of each band is more sensitive to bilayer structural changes than the largely used parameter called Generalized Polarization, possibly because the latter does not completely separate the fluorescence emission from the two different excited states of Laurdan. Moreover, it will be shown that this decomposition should be done with the spectrum as a function of energy, and not wavelength. Due to the presence of the two emission bands in Laurdan spectrum, fluorescence anisotropy should be measured around 480 nm, to be able to monitor the fluorescence emission from one excited state only, the solvent relaxed state. Laurdan will be used to monitor the complex structure of the anionic phospholipid DMPG (dimyristoyl phosphatidylglycerol) at different ionic strengths, and the alterations caused on gel and fluid membranes due to the interaction of cationic peptides and cholesterol. Analyzing both the emission spectrum decomposition and anisotropy it was possible to distinguish between effects on the packing and on the hydration of the lipid membrane surface. It could be clearly detected that a more potent analog of the melanotropic hormone α-MSH (Ac-Ser1-Tyr2-Ser3-Met4-Glu5-His6-Phe7-Arg8-Trp9-Gly10-Lys11-Pro12-Val13-NH2) was more effective in rigidifying the bilayer surface of fluid membranes than the hormone, though the hormone significantly decreases the bilayer surface hydration.  相似文献   

11.
Fluorescence properties of three potential antitumoral compounds, a 3-(dibenzothien-4-yl)indole 1, a phenylbenzothienoindole 2 and a 3-(dibenzofur-4-yl)indole 3, were studied in solution and in lipid aggregates of dipalmitoyl phosphatidylcholine (DPPC), dioleoyl phosphatidylethanolamine (DOPE) and egg yolk phosphatidylcholine (Egg-PC). The 3-(dibenzofur-4-yl)indole 3 exhibits the higher fluorescence quantum yields in all solvents studied (0.32 ≤ ΦF ≤ 0.51). All the compounds present a solvent sensitive emission, with significant red shifts in alcohols. The results point to an ICT character of the excited state, more pronounced for compound 1. Fluorescence (steady-state) anisotropy measurements of the compounds incorporated in lipid aggregates of DPPC, DOPE and Egg-PC indicate that the three compounds are deeply located in the lipid bilayer, feeling the difference between the rigid gel phase and fluid phases.  相似文献   

12.
This work deals with detailed investigations of the photophysical properties of a styryl merocyanine dye, namely 1-cetyl-4-[4′-(methoxy) styryl]-pyridinium bromide (CMSPB) of molecular rotor type. The solvatochromic analyses of the data in different solvents using the Kamlet-Taft parameters (α, β, π?) were discussed. Optical excitation of the studied merocyanine dye populates a CT S1 state with about 22.64 folds higher dipole moment value relative to that in the S0 state. Moreover, the effect of solvent viscosity (glycerol at various temperatures (299.0–351.0 K)) on CMSPB fluorescent properties is analyzed to understand the molecular mechanisms of the characteristic increase in CMSPB fluorescence intensity. The results indicate that CMSPB exhibits fluorescent properties typical for molecular rotors. The results show that torsional relaxation dynamics of molecular rotors in high-viscosity solvents cannot be described by the simple stick boundary hydrodynamics defined by the Debye–Stokes–Einstein (DSE) equation. The fluorescence depolarization behavior in glycerol at various temperatures (299.0–351.0 K) shows that the molecular rotational diffusion is controlled by the free volume of the medium. Furthermore, excited state studies in ethanol/chloroform mixture revealed the formation of weak complex with chloroform of stoichiometry 1:1 with formation constant of 0.004l mol?1. Moreover, the increase of the quantum yield values in micellar solutions of CTAB and SDS relative to that of water indicates that the guest dye molecules are microencapsulated into the hydrophobic interior of host micelle. The obtained non-zero values of fluorescence polarization in micellar solution imply reduced rotational depolarization of dye molecules via association with the surfactant. Upon comparing the spectral data in micelles with those in homogeneous solvent systems, more can be learned of the structural details of the micellar environment, which have often been used as models for more complex bioaggregates. The results point out to a possible use of this dye as a fluorescence probe for microenvironmental parameters as well as in some micellar systems.  相似文献   

13.
This study introduced spectroscopic properties, physicochemical parameters, and polarity and photostability behaviors of a newly prepared chalcone dye. The chalcone dye, (2E)-3-(3,4-Dimethoxyphenyl)-1-(2,5-dimethylthiophen-3-yl)prop-2-en-1-one (DDTP), was synthesized by the reaction of 3,4-dimethoxybenzaldehyde with 3-acetyl-2,5-dimethythiophene. Results of FT-IR, 1H-NMR, 13C-NMR and elemental analysis were in conformity with chemical structure of newly prepared DDTP. Data of thermal gravimetric analysis revealed that DDTP has good thermal stability. Increases in fluorescence intensities of DDTP with cetyltrimethyl ammonium bromide (CTAB) were observed. In comparison of fluorescence intensities for DDTP with CTAB, reductions in fluorescence intensities for DDTP with sodium dodecyl sulphate (SDS) were observed under the same experimental and instrumental conditions. Moreover, Benesi-Hildebrand method was applied to determine stoichiometric ratios and association constants of DDTP with CTAB and SDS. The stoichiometric ratio and association constant obtained from Stern-Volmer plot strongly supported those obtained from Benesi-Hildebrand plot of DDTP with SDS. Physicochemical parameters, such as, singlet absorption, molar absorptivity, oscillator strength, dipole moment and fluorescence quantum yield of DDTP were also estimated. Fluorescence steady-state measurements ultimately displayed that DDTP has a high photostability against photobleaching. Fluorescence polarity study revealed that DDTP was sensitive to the polarity of the microenvironment provided by different solvents.  相似文献   

14.
Steady-state and time-resolved spectroscopic properties of rhodamine-123 (rh123) and 4,5-dibromorhodamine methyl ester (dbr123) bound to different cell lines are evaluated. Studies are also performed on the dye bound to extracted mitochondria. Results are compared with those obtained in homogeneous and microheterogeneous media. Results suggest that these dyes can specifically bind only with cell mitochondria. As a result of binding, excitation and emission spectra are red shifted by 10 to 12 nm. The fluorescence decay of these dyes bound to mitochondria shows two lifetimes. Values are about 4.0 and 2.0 ns forrh123 and about 1.9 and 0.5 ns fordbr123. Detailed global analysis of emission wavelength and dye concentration dependences of the fluorescence decay is performed. Results indicate that these dyes are bound to two different binding sites at mitochondria. The decay-associated fluorescence spectrum for the species corresponding to each binding site is recovered. Species1, corresponding to the longer lifetime, is found to be more red shifted compared to species2. The fluorescence of species2 is heavily quenched. The origin of this quenching is explained in terms of resonance energy transfer between donor species2 and acceptor species1. The possible nature of the two binding sites is also discussed.  相似文献   

15.
In this paper are presented absorption and fluorescence emission properties of 3-styrylindoles viz. 3-(2-phenylethenyl-E)-NH-indole (1), 3-[2-(4-nitrophenyl)ethenyl-E)-NH-indole (2), 3-[2-(4-cyanophenyl)ethenyl-E]-N-ethylindole (3) and 3-[2-(4-cyanophenyl)ethenyl-E]-NH-indole (4) in organic solvents, 1,4-dioxane-water binary mixtures and micelles (SDS, CTAB and Triton-X-100). The fluorescence properties of 2-4 have been utilized to probe the microenvironment (binding constant, CMC, micropolarity and solubilization site) of the micelles.  相似文献   

16.
Fluorescence imaging is well-suited for the live imaging of biological Zn(II), which has no facile spectroscopic or magnetic signature. The successful application of this methodology requires the development of robust Zn(II) imaging agents that display high sensitivity, selectivity and temporal fidelity. In this study, a N2O2-type dipyrrin based bimolecular zinc(II) complex was produced and shown to have sharper, blue-shifted and more enhanced fluorescence emission. An approximate three-fold fluorescence enhancement was achieved within the micromolar concentration range, which is an important parameter for Zn(II) detection in vivo. The increase in emission intensity was due to the dominant role of aryl-ring rotation in governing the excited state dynamics and fluorescence properties of the dipyrrin dye. Fluorescence titration showed that the ligand complex exhibited very strong zinc(II) binding affinity when compared to that in the binuclear chloro complex. The fluorescence emission changes in the dipyrrin dye to zinc(II) ion could be observed not only using instruments but also by the naked-eye (violet→sky blue).  相似文献   

17.
3-Hydroxyquinolones (3HQs) are a new class of water soluble dual fluorescence probes that can monitor both polarity and basicity (H-bond accepting ability) parameters. Both parameters play an important role in proteins and lipid membranes. Nevertheless, no method exists actually to measure the basicity parameter separately from the polarity. To achieve this aim, we synthesized 2-benzofuryl-3-hydroxy-4(1H)-quinolone (3HQ-Bf) and characterized its photophysical properties by UV, steady-state and time-resolved fluorescence spectroscopy. Due to its extended conjugation and totally planar conformation, 3HQ-Bf is characterized by a high fluorescence quantum yield. In solution, this dye shows an excited state intramolecular proton transfer (ESIPT) reaction resulting in two tautomer bands in the emission spectra. The ESIPT reaction can be considered as irreversible and is governed by rate constants from 0.6 to 8 × 109 s−1, depending on the solvent. The analysis of the spectral properties of 3HQ-Bf in a series of organic solvents revealed a marginal sensitivity to the solvent polarity, but an exquisite sensitivity to solvent basicity, as shown by the linear dependence of the logarithm of the emission bands intensity ratio, log(IN*/IT*), as well as the absorption or emission maxima wavenumbers as a function of the solvent basicity parameter. This probe may find useful applications through coupling to a protein ligand, for characterizing the H-bond acceptor ability at the ligand binding site as well as for studying the basicity changes of lipid membranes during their chemo- and thermotropic conversions.  相似文献   

18.
The fluorescence properties of the phospholipid derivative,N-[1-(2-naphthol)]-phosphatidylethanolamine (NAPH-PE), have been studied by steady-state and time-resolved fluorescence techniques. The new probe is a naphthol adduct of phosphatidylethanolamine. The emission spectrum of the fluorescent phospholipid depends on the pH and on the proton acceptor concentration as expected for a typical two-state excited-state proton transfer reaction. In ethanol solutions at an apparent pH of 6.7 and in the presence of acetate anion (0.14M), a biexponential decay is obtained from global analysis of the data. The lifetimes, 1=3.9 ns and 2=6.2 ns. are constant across the spectral region 350–460 nm. The decay-associated spectra and the species-associated spectra reproduce well the profiles reported for a two-state excited-state proton transfer reaction. The fluorescent phospholipid has been incorporated into dimyristoyllecithin and dipalmitoyllecithin vesicles. Although lower proton transfer is found, the reaction appears to be dependent on the gel-to-liquid-crystalline phase transition of the lipid membrane. In addition, the steady-state anisotropy of NAPH-PE measured as a function of temperature trace the phase transition of the two vesicle systems. Thus, it is shown that the physical state of the bilayer affects a reaction which takes place at the membrane surface. In the presence of acetate ions (0.3M), global analysis, performed in terms of fluorescence decay parameters, recovers preexponential coefficients that are consistent with an excited-state proton transfer reaction. The short lifetime drops from 3.9 to 0.44 ns without significant changes of the longer-lifetime component.  相似文献   

19.
本文首先构建了水溶性磷酸盐柱[5]芳烃(PP5A)与阳离子荧光染料吖啶橙(AO)主-客体络合物.然后通过紫外光谱(UV)、红外吸收光谱(IR)、分子荧光光谱(MFS)、一维和二维核磁共振(NMR)波谱技术(包括1H NMR和NOESY)研究了PP5A与AO的络合行为.此外,还研究了pH及两种表面活性剂——十二烷基硫酸钠(SDS)和十六烷基三甲基溴化铵(CTAB)对AO/PP5A络合体系的荧光强度的影响.最后,采用分子对接计算了PP5A与AO和CTAB的络合模式及络合能.研究表明,AO与PP5A形成1:1的主-客体络合物;在pH=3~11范围内,PP5A均能使AO的荧光强度发生减弱或淬灭;SDS和CTAB的加入并不会对AO/PP5A络合体系的荧光强度产生显著影响.AO与PP5A络合时产生的荧光强度变化可为荧光传感器的设计提供理论基础.  相似文献   

20.
Two highly photostable yellow–green emitting 1,8-naphthalimides 5 and 6, containing both N-linked hindered amine moiety and a secondary or tertiary cation receptor, were synthesized for the first time. Novel compounds were configured as “fluorophore–spacer–receptor” systems based on photoinduced electron transfer. Photophysical characteristics of the dyes were investigated in DMF and water/DMF (4:1, v/v) solution. The ability of the new compounds to detect cations was evaluated by the changes in their fluorescence intensity in the presence of metal ions (Cu2+, Pb2+, Zn2+, Ni2+, Co2+) and protons. The presence of metal ions and protons was found to disallow a photoinduced electron transfer leading to an enhancement in the dye fluorescence intensity. Compound 5, containing secondary amine receptor, displayed a good sensor activity towards metal ions and protons. However the sensor activity of dye 6, containing a tertiary amine receptor and a shorter hydrocarbon spacer, was substantially higher. The results obtained indicate the potential of the novel compounds as highly photostable and efficient “off–on” pH switchers and fluorescent detectors for metal ions with pronounced selectivity towards Cu2+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号