首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stability characteristics of an ultra-thin layer of a viscous liquid flowing down a cylindrical fibre are investigated by a linear theory. The film with the thickness less than 100 nm is driven by an external force and under the influence of the van der Waals forces. The results show that, when the relative film thickness decreases, the curvature of the fibre depresses the development of the linear perturbations, whereas the van der Waals forces promote the instabilities. This competition results in a non-monotonous dependence of the growth rate on the relative film thickness. The critical curves are also obtained to describe the transition from the absolute instability to the convective instability, indicating that the van der Waals forces can enlarge the absolutely unstable region. Furthermore, the surface tension can cause the development of the absolute instability, whereas the external force has an opposite effect.  相似文献   

2.
The stability characteristics of an ultra-thin layer of a viscous liquid flowing down a cylindrical fibre are investigated by a linear theory. The film with the thickness less than 100 nm is driven by an external force and under the influence of the van der Waals forces. The results show that, when the relative film thickness decreases, the curvature of the fibre depresses the development of the linear perturbations, whereas the van der Waals forces promote the instabilities. This competition results in a non-monotonous dependence of the growth rate on the relative film thickness. The critical curves are also obtained to describe the transition from the absolute instability to the convective instability, indicating that the van der Waals forces can enlarge the absolutely unstable region. Furthermore, the surface tension can cause the development of the absolute instability, whereas the external force has an opposite effect.  相似文献   

3.
Summary  The morphological stability of epitaxial thin elastic films on a substrate by van der Waals force is discussed. It is found that only van der Waals force with negative Hamaker constant tends to stabilize the film, and the lower bound for the Hamaker constant is also obtained for the stability of thin film. The critical value of the undulation wavelength is found to be a function of both film thickness and external stress. The charateristic time-scale for surface mass diffusion scales to the fourth power to the wavelength of the perturbation. Received 4 December 2000; accepted for publication 31 July 2001  相似文献   

4.
Conditions leading to thinning of a plane liquid film in the case where the van der Waals forces drawing together the opposite surfaces of the film greatly exceed the capillary pressure forces are discussed. Estimates of the lifetime of a thin film are obtained.  相似文献   

5.
When the thicknesses of thin films reduce to microns or even nanometers, surface energy and surface interaction often play a significant role in their deformation behavior and surface morphology. The spinodal surface instability induced by the van der Waals force in a soft elastic thin film perfectly bonded to a rigid substrate is investigated theoretically using the bifurcation theory of elastic structures. The analytical solution is derived for the critical condition of spinodal surface morphology instability by accounting for the competition of the van der Waals interaction energy, elastic strain energy and surface energy. Detailed examinations on the effect of surface energy, thickness and elastic properties of the film show that the characteristic wavelength of the deformation bifurcation mode depends on the film thickness via an exponential relation, with the power index in the range from 0.749 to 1.0. The theoretical solution has a good agreement with relevant experiment results.  相似文献   

6.
The stability of non-Newtonian fluid films moving on inclined planes is studied within the framework of the two-parameter Ostwald-de Waele model taking into account surface tension and van der Waals forces. The problem is solved analytically in the linear formulation, and the evolution of finite-amplitude perturbations is determined numerically. Novosibirsk Military Institute, Novosibirsk 630117. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 41, No. 3, pp. 75–80, May–June, 2000.  相似文献   

7.
A study is made of the dynamics of a thin film of viscous liquid with allowance for the influence of capillary forces and long-range van der Waals forces. Asymptotic solutions are found to problems of the dynamics of films in communication with a region of reduced pressure. It is shown that at a certain instant such a film breaks at its edge. The critical parameters that determine the instant of breaking are found and the form of the solution in the stage of breaking is given.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 47–55, July–August, 1982.  相似文献   

8.
The frequencies and damping coefficients of gravitational-capillary waves are found for a wide range of controlling dimensionless parameters. The transition to the limiting cases of deep water and an ideal fluid is analyzed. In the parameter plane, the boundary between the regions of oscillatory and aperiodic perturbations is determined and the region of weak damping is indicated. The equilibrium state of thin liquid films with account for the Van der Waals forces is considered and the dispersion equation for the capillary-Van der Waals surface waves is obtained. For a suitably chosen frequency scale, this equation is the same as that for gravitational-capillary waves. The physical conditions making it possible to observe capillary and Van der Waals waves in thin fluid layers are estimated. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 156–164, July–August, 2000.  相似文献   

9.
The motion of thin films of a viscous incompressible liquid in a gas under the action of capillary forces is studied. The surface tension depends on the surfactant concentration, and the liquid is nonvolatile. The motion is described by the well-known model of quasi-steady-state viscous film flow. The linear-wave solutions are compared with the solution using the Navier-Stokes equations. Situations are studied where a solution close to the inviscid two-dimensional solutions exists and in the case of long wavelength, the occurrence of sound waves in the film due to the Gibbs surface elasticity is possible. The behavior of the exact solutions near the region of applicability of asymptotic equations is studied, and nonmonotonic dependences of the wave characteristics on wavenumber are obtained. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 3, pp. 103–111, May–June, 2007.  相似文献   

10.
We obtain the correction due to van der Waals forces to the flexural rigidity of a layer. The cases of a monolayer and a film consisting of several monolayers are considered. The correction due to van der Waals interaction to the force acting on an indentor is obtained. Two versions of determining the elastic forces at the microlevel are considered. Numerical estimates of the parameter values for which the correction is essential are given.  相似文献   

11.
An analytical solution to the problem of condensation by natural convection over a thin porous substrate attached to a cooled impermeable surface has been conducted to determine the velocity and temperature profiles within the porous layer, the dimensionless thickness film and the local Nusselt number. In the porous region, the Darcy–Brinkman–Forchheimer (DBF) model describes the flow and the thermal dispersion is taken into account in the energy equation. The classical boundary layer equations without inertia and enthalpyterms are used in the condensate region. It is found that due to the thermal dispersion effect, the increasing of heat transfer is significant. The comparison of the DBF model and the Darcy–Brinkman (DB) one is carried out.  相似文献   

12.
A thermoelastic problem for a layer of finite thickness one of whose surfaces is subjected to the action of normal pressure and heat flux is studied. A relationship among vertical displacements of the surface of the layer, the surface temperature, and the disturbing factors is obtained. Corresponding relations are obtained for a layer of small thickness. An axisymmetric contact problem for a rigid heat-conducting base whose surface is coated with a thin elastic layer is studied as an example. Franko L'vov State University, L'vov 290602. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 1, pp. 110–118, January–February, 1998.  相似文献   

13.
We investigate the surface instability of an anisotropic elastic half-plane subjected to surface van der Waals forces due to the influence of another rigid contactor by means of the Stroh formalism. It is observed that the surface of a generally anisotropic elastic half-plane subjected to van der Waals forces from another rigid flat is always unstable. The wave number of the surface wrinkling is only reliant on the positive M22 component of the 3 × 3 surface admittance tensor M, the van der Waals interaction coefficient β and the surface energy γ of the elastic half-plane. The decay rate of surface perturbation along the direction normal to the surface of the anisotropic half-plane is different from the wave number, a phenomenon different from that observed for an isotropic half-plane.  相似文献   

14.
The linear bifurcation theory is used to investigate the stability of soft thin films bonded to curved substrates. It is found that such a film can spontaneously lose its stability due to van der Waals or electrostatic interaction when its thickness reduces to the order of microns or nanometers. We first present the generic method for analyzing the surface stability of a thin film interacting with the substrate and then discuss several important geometric configurations with either a positive or negative mean curvature. The critical conditions for the onset of spontaneous instability in these representative examples are established analytically. Besides the surface energy and Poisson's ratio of the thin film, the curvature of the substrate is demonstrated to have a significant influence on the wrinkling behavior of the film. The results suggest that one may fabricate nanopatterns or enhance the surface stability of soft thin films on curved solid surfaces by modulating the mechanical properties of the films and/or such geometrical properties as film thickness and substrate curvature. This study can also help to understand various phenomena associated with surface instability.  相似文献   

15.
针对固体基底上厚度小于100 nm的含活性剂超薄液膜演化过程, 基于润滑理论推导出包含分离压影响的液膜厚度和活性剂浓度的演化方程, 采用正则模态法导出了描述液膜线性稳定性的特征方程, 分析了多个特征参数对线性稳定性的影响, 数值模拟了液膜厚度和活性剂浓度演化历程, 对比了模拟所得非线性结果与线性分析预测结果的一致性.结果表明:范德华力具有促进扰动增长的作用, 较强的玻恩斥力促使扰动衰减, 使液膜趋于稳定;较小的毛细力数易使液膜凹陷处发生二次失稳, 并最终导致去润湿现象发生;液膜厚度和溶于液膜内部的活性剂浓度初值越大, 液膜稳定性越强, 液膜表面活性剂浓度影响则相反;增大吸附系数不利于液膜稳定性.  相似文献   

16.
It is shown that the critical Rayleigh number which characterizes the stability of a thin charged viscous fluid film on the surface of a rigid spherical core develops rapidly with decrease in the film thickness to 100 nm when the effect of the disjoining pressure becomes significant. The dependence of the instability growth rate on the thickness of the fluid layer is obtained by analyzing the dispersion relation numerically. Yaroslavl’. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 102–106, January–February, 1999.  相似文献   

17.
18.
The deformation of a single wall carbon nanotube (SWCNT) interacting with a curved bundle of nanotubes is analyzed. The SWCNT is modeled as a straight elastic inextensible beam based on small deformation. The bundle of nanotubes is assumed rigid and the interaction is due to the van der Waals forces. An analytical solution is obtained using a bilinear approximation to the van der Waals forces. The analytical results are in good agreement with the results of two numerical methods. The results indicate that the SWCNT remains near the curved bundle provided that its curvature is below a critical value. For curvatures above this critical value the SWCNT breaks contact with the curved bundle and nearly returns to its straight position. A parameter study shows that the critical curvature depends on the stiffness of the SWCNT and the absolute minimum energy associated with the van der Waals forces but it is independent of the SWCNT's length in general. An analytical estimate of the critical curvature is developed. The results of this study may be applicable to composites of nanotubes where separation phenomena are suspected to occur.  相似文献   

19.
Adhesive forces commonly exhibit a monotonic increase or a maximum with increasing relative humidity. However, anomalous behavior has been reported. Here, a numerical model of adhesive forces, comprised mainly of capillary and van der Waals forces, between a tip and a surface is established. It is described by a power law that considers the geometry, the liquid bridge wetting radius, the contact angle, and the separation distance. Capillary forces (sum of surface tension and Laplace pressure) and van der Waals forces are calculated. The latter cannot be neglected in the adhesion even at high humidity. Decrease in adhesion with increasing relative humidity can be attributed to a blunt tip shape, which is validated by experimental data. Specifically, the decrease in adhesion is attributed primarily to a transition from a rounded to a blunt tip shape. Structuring objects at the micro- or nanoscale can either increase or decrease adhesion as a function of relative humidity. This has a wide range of applications in robotic manipulation and can provide a better understanding of adhesion mechanisms in atomic force microscopy in ambient air.  相似文献   

20.
The hydrodynamic instability of a film flow of a weak solution containing a soluble volatile surfactant is investigated. Diffusion of the surfactant in the liquid, its evaporation into the boundary gas medium, and the adsorption and desorption processes in the near-surface layer are taken into account. A system of evolutionary equations is derived and a steady-state solution film flow along a vertical surface and the stability of this flow are investigated for the simultaneous action of body and capillary forces and the Marangoni effect. Hydrodynamic and diffusion instability modes are detected and their properties are investigated for constant and variable surfactant concentration in the adsorbed sublayer. Moscow, Madrid. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 56–67, July–August, 2000. The work was carried out with support from the Russian Foundation for Basic Research (project No. 97-01-00153) and the Spanish Ministry of Higher Education (program DGICYT (Spain), project No. PB 96-599).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号