首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
聚醚醚酮酮等温结晶动力学的研究陈艳,王军佐,曹俊奎,那辉,吴忠文(吉林大学化学系,长春,130023)关键词聚醚醚酮酮,等温结晶动力学,差示扫描量热法聚醚醚酮酮(PEEKK)是在聚醚醚酮(PEEK)基础上开发成功的一种耐热高分子材料。它保持了PEEK...  相似文献   

2.
聚醚醚酮/聚醚醚酮酮共混体系的熔融和等温结晶行为   总被引:3,自引:0,他引:3  
采用熔融共混方法制备了聚醚醚酮和聚醚醚酮酮的共混物,用DSC对共混物的熔融行为和等温结晶行为进行了研究.结果表明,共混物熔点随聚醚醚酮含量增加而降低,但与聚醚醚酮酮有相同的平衡熔点,二者共混没有改变其结晶的成核与生长机制.  相似文献   

3.
使用3,3 ′,4,4′-联苯四酸二酐( s-BPDA),1,3,-双(4-氨基苯氧基)苯(TPER)和苯酐(PA)反应合成了一种半结晶型聚酰亚胺.根据DSC记录的不同速率下降温所得到的结晶放热曲线,分别采用Jeziorny、Ozawa及奠志深提出的方法对其非等温结晶行为进行了研究.发现由Jeziorny方法分析得到的...  相似文献   

4.
氧化钕填充聚丙烯的等温结晶动力学研究   总被引:4,自引:2,他引:4  
用DSC法研究了氧化钕微粉填充聚丙烯的等温结晶动力学.结果表明,加入少量氧化钕可明显提高聚丙烯的基体结晶速率和结晶度,降低球晶径向生长的单位面积表面自由能;从Avrami和Hoffman理论出发都可得出稀土氧化物Nd2O3填充聚丙烯后可明显改变聚丙烯的结晶行为.  相似文献   

5.
通过示差扫描量热仪(DSC)对含氟聚合物与聚醚醚酮(PEEK)共混物的非等温结晶熔融行为和等温结晶熔融行为进行了研究.研究表明:不同的含氟聚合物以及具有不同端基的同种含氟聚合物对PEEK的结晶行为有不同的影响.端基为酰氟(COF)的乙烯-四氟乙烯共聚物(ETFE)能促进PEEK结晶时的成核,加快PEEK的等温结晶速率,而聚四氟乙烯(PTFE)则会减慢PEEK的等温结晶速率.  相似文献   

6.
聚芳醚酮类特种工程塑料由于其优异的机械性能、热稳定性、耐溶剂、耐辐照等特性而在航空航天、军事、电子、信息和核能等领域得到广泛的应用,为了得到使用温度更高的聚芳醚酮材料,人们开发了许多聚芳醚酮的新品种,但采用通常方法在提高材料使用温度的同时,材料的加工温度也越来越高,为了在不提高加工温度的前提下提高聚芳醚酮类材料的使用温度,我们已经成功地在聚醚醚酮的主链中引入可交联的硫醚结构,得到使用温度更高的可交联聚醚醚酮材料。  相似文献   

7.
采用DSC方法研究了不同分子量聚乳酸在不同降温速率下的结晶过程,利用Ozawa方程和Kissinger方程研究了其非等温结晶动力学。结果表明,随着降温速率的增大和分子量增加,结晶峰向低温偏移,且峰形趋于平缓。求得分子量为2.6×104的聚乳酸的Ozawa指数m接近3,以异相成核的三维球晶生长为主,而分子量为14.3×104和19.2×104的聚乳酸的Ozawa指数m接近4,以均相成核的三维球晶生长为主,结晶活化能分别为-165.8kJ/mol、-82.1kJ/mol和-75.4kJ/mol。建立的"铰链"模型解释了不同分子量聚乳酸结晶活化能的显著差异,得到了聚乳酸分子量与结晶活化能的关系。  相似文献   

8.
PET/PEN/DBS共混物非等温结晶动力学研究   总被引:1,自引:0,他引:1  
采用DSC方法, 用修正的Avrami, Ozawa, Ziabicki宏观动力学模型描述PET/PEN/DBS[PET: 聚对苯二甲酸乙二醇酯; PEN: 聚2,6-萘二甲酸乙二醇酯; DBS: 1,3∶2,4-二(亚苄基)-D山梨醇]共混物的非等温熔融结晶过程, 研究结果表明, 修正的Avrami模型能很好地描述此共混物非等温结晶过程. 冷却速率在5-20 ℃/min范围内, Ozawa方程能很好地描述初期结晶过程, 但结晶后期由于忽略次级结晶而不适宜. 由Ziabicki结晶动力学参数可知, 该共混物的结晶随着成核剂DBS含量的增加而降低, 结晶速率随着成核剂DBS含量的增加而提高. 在非等温结晶条件下, 共混物结晶同时受到冷却速率和共混物组成的影响, 与共混物非等温结晶过程的有效能垒分析结果基本一致.  相似文献   

9.
igh performance crystal/crystal blends of poly (phenylene sulfide) and poly (ether ether ketone) (PPS/PEEK) have ho prepared by dry mixing and melhng at different temperatures. The crystallization and melting behavior of PEEK component in quenched blends have ho investigated by differential scanningcalorimetry (DSC). As melt temperature (Tmelt) increases, the crystalline andmelting behavior of PPS and PEEK is different due to the difference of thermalproperty of PPS and PEEK. The temperature of melhng (Tm) and crystallization (Tc) and crystallinity (Xc) of PEEK component in blends increase as the content of PPS increases up to 50%. However. this action of PPS is suppresed with increasing of Tmelt.  相似文献   

10.
用DSC方法对乙烯基甲醚/马来酸酐交替共聚物多缩乙二醇酯(CBP) 聚氧化乙烯(PEO)共混体系的非等温结晶动力学进行了研究,用Mandelkern、Z J(Ziabiki Jeziorny)、Ozawa和对Ozawa方法的一种修正方法对该体系进行了处理.结果表明:得到了一种既没有结晶又有较多EO单元含量的共混物,CBP对PEO的结晶有抑制作用.Avrami指数随冷却速率的加快在38~57之间波动.Mandelkern方法求得的结晶动力学参数Zc随冷却速率的增加而增加,共混物的Gc值不随冷却速率的变化而变化,随PEO含量增加而减少,处理结果表明而Z J理论能较好地解释本体系的非等温结晶过程和机理.  相似文献   

11.
含间位聚醚酮醚酮酮的合成与结晶   总被引:2,自引:0,他引:2  
聚芳醚酮类聚合物因其综合性能优异而在高技术领域得到广泛应用.这些高聚物的主链大都为全对位连接,使其熔点较高以至加工难度增大.如果在聚合物主链中引入间位结构,则可在对玻璃化转变温度影响较小的情况下降低熔点来改善加工条件[1].含间位聚醚酮醚酮酮(PEKEKmK)也是其中一种.本文主要研究PEKEKmK的合成、基本物性与结晶行为.样品的合成与制备:单体4,4′双(对苯氧基)二苯甲酮按文献[2]方法合成.聚合物参照文献[3]合成.将粉末样品在油压机上熔融后快速取出投入冰水中淬火得无定形样品,或将熔融…  相似文献   

12.
含联苯结构聚醚醚酮酮共聚物和共混物的制备及性能研究   总被引:8,自引:0,他引:8  
聚醚醚酮(PEEK)是八十年代初投入市场的全芳香结构热塑性耐高温特种工程塑料,它的7’。一143“C,Tm一334C“‘,最大结晶度为48%,典型制品结晶度为20%~30%[”.PEEK可用通常的设备成型,其制件、纤维、涂料及复合材料在电子电器、机械设备、交通运输、宇航、原子能工程、军事等领域有广泛的用途[’j.聚醚醚酮酮(PEEKK)是继PEEK之后,由德国Hoechst公司开发出来的又一种全芳香结构热塑性耐高温特种工程塑料[‘j.为了研究该类聚合物的结构和性能的关系,我们在实验室中合成了PEEKK和含联苯结构聚醚醚酮酮(PE-*…  相似文献   

13.
晶体结构;聚芳醚酮醚酮酮类聚合物的结晶与多晶型  相似文献   

14.
用透射电子显微镜和电子衍射方法研究了含间苯连接的聚醚醚酮酮(PEEKmK)溶液浇铸薄膜的等温结晶过程和形态结构.结果表明,PEEKmK无论从玻璃态结晶还是从熔体结晶均能形成2种不同取向的结晶形态结构,即平放片晶和侧放片晶;前者c轴垂直于膜平面,后者c轴平行于膜平面.其结晶发展过程为先形成平放单晶状片晶,随着时间的增长,在单晶上开始生长侧放片晶,逐渐发展形成球晶,最终形成2种不同取向的单晶和球晶共存的结晶形态结构.  相似文献   

15.
聚醚砜醚酮的合成与性能   总被引:1,自引:1,他引:1  
以4,4′-二羟基二苯砜和4,4′-二氟二苯酮为单体, 通过溶液缩聚合成了聚醚砜醚酮(PESEK), 其分子结构相当于聚醚砜(PES)与聚醚醚酮(PEEK)的交替共聚物. 在共聚物分子中, 存在砜基、醚基和酮基, 整个结构单元形成了大共轭体系, 聚合物属无定形聚合物, 玻璃化转变温度(Tg)为198 ℃, 介于PEEK和PES的Tg之间, 其热稳定性和加工性能优于PES, 而力学性能与PES接近.  相似文献   

16.
聚芳醚酮类特种工程塑料以其优异的机械性能、热稳定性、耐溶剂、耐辐照等特性在运输、航空航天、军事、电子、信息、核能等领域得到了广泛应用[1].聚醚醚酮的玻璃化转变温度(Tg)和熔点(Tm)分别为416和607 K,其长期使用温度为513 K,而其热分解温度在800 K以上,是热稳定性较好的聚合物之一.为了满足一些特殊需求,人们通过在聚芳醚酮的主链中引入刚性结构链,提高其主链的刚性程度,从而提高其T g和Tm,进而提高其使用温度[2~4].文献[5]报道的新型聚芳醚酮的T g和T m最高可达482和742 K,采用常规方法进行加工难度较大.为了在不提高加工温度的前提下提高聚芳醚酮类材料的使用温度,我们已成功地在聚醚醚酮的主链中引入可交联的硫醚结构,得到使用温度更高的可控交联聚醚醚酮材料,其可利用热塑性材料的加工方法进行加工,加工温度与聚醚醚酮相同,交联后的材料具有热固性材料的使用特性[6,7].为了拓宽可交联聚芳醚酮材料的种类,本文合成了一种类新型的可交联型聚醚醚酮酮材料,并对其热交联性能进行了研究.  相似文献   

17.
根据Flory热力学统计理论和比容-熔融热作国法,由DSC结果得到了不同联苯含量的聚醚醚酮酮-含联苯聚醚醚酮酮(PEEKK-PEBEKK)共聚物的熔融热,两种方法获得的结果吻合。在此基础上给出了PEEKK-PEBEKK共聚物不同联苯含量的熔点计算表达式。结果还表明,随着联苯含量nB,的变化,明显改变;当nB=0.35时,PEEKKPEBEKK共聚物的值最小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号