首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Supramolecular polymers constructed by orthogonal self-assembly based on multiple hydrogen bonding and macrocyclic host-guest interactions have received increasing attention due to their elegant structures,outstanding properties,and potential applications.Hydrogen bonding endows these supramolecular polymers with good adaptability and reversibility,while macrocyclic host-guest interactions give them good selectivity and versatile stimuli-responsiveness.Therefore,functional supramolecular polymers fabricated by these two highly specific,noninterfering interactions in an orthogonal way have shown wide applications in the fields of molecular machines,electronics,soft materials,etc.In this review,we discuss the recent advances of functional supramolecular polymers fabricated by orthogonal self-assembly based on multiple hydroge n bonding and host-guest interactions.In particular,we focus on crown ether-and pillar[n]arene-based supramolecular polymers due to their compatibility with multiple hydrogen bonds in organic solution.The fabrication strategies,interesting properties,and potential applications of these advanced supramolecular materials are mainly concerned.  相似文献   

2.
A pH-responsive supramolecular micelle consisting of β-cyclodextrin-contained poly(β-amino ester) and adamantyl-terminated poly(ethylene glycol) was prepared through host-guest interaction. The micelle can encapsulate curcumin to achieve significant inhibition effect against sarcoma 180 in vivo.  相似文献   

3.
A facile approach for constructing diverse architectures of unmodified C60 was developed via simple evaporation of pure C60 solution in CS2 under various poor solvent atmospheres. Diverse architectures such as belts, sheets, and starfishes were successfully constructed under different experimental conditions. C60 belts obtained under EtOH atmosphere were confirmed to be a face-centered cubic (fcc) structure. The solvent atmospheres not only slowed clown the evaporation speed, but also could reorganize the self-assembly of C60 by partially re-dissolving the initially formed architectures. This concept represents a novel method for preparation of nanostructures of C60 and could also be applied for controlling of the self-assembly of other functional organic molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号