首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
In the presence of carboxylic acids the complex [Mn(IV)2(micro-O)3(tmtacn)2]2+ (1, where tmtacn = N,N',N'-trimethyl-1,4,7-triazacyclononane) is shown to be highly efficient in catalyzing the oxidation of alkenes to the corresponding cis-diol and epoxide with H2O2 as terminal oxidant. The selectivity of the catalytic system with respect to (w.r.t.) either cis-dihydroxylation or epoxidation of alkenes is shown to be dependent on the carboxylic acid employed. High turnover numbers (t.o.n. > 2000) can be achieved especially w.r.t. cis-dihydroxylation for which the use of 2,6-dichlorobenzoic acid allows for the highest t.o.n. reported thus far for cis-dihydroxylation of alkenes catalyzed by a first-row transition metal and high efficiency w.r.t. the terminal oxidant (H2O2). The high activity and selectivity is due to the in situ formation of bis(micro-carboxylato)-bridged dinuclear manganese(III) complexes. Tuning of the activity of the catalyst by variation in the carboxylate ligands is dependent on both the electron-withdrawing nature of the ligand and on steric effects. By contrast, the cis-diol/epoxide selectivity is dominated by steric factors. The role of solvent, catalyst oxidation state, H2O, and carboxylic acid concentration and the nature of the carboxylic acid employed on both the activity and the selectivity of the catalysis are explored together with speciation analysis and isotope labeling studies. The results confirm that the complexes of the type [Mn2(micro-O)(micro-R-CO2)2(tmtacn)2]2+, which show remarkable redox and solvent-dependent coordination chemistry, are the resting state of the catalytic system and that they retain a dinuclear structure throughout the catalytic cycle. The mechanistic understanding obtained from these studies holds considerable implications for both homogeneous manganese oxidation catalysis and in understanding related biological systems such as dinuclear catalase and arginase enzymes.  相似文献   

2.
Seven new pyridine dicarboxamide ligands H2L(1-7) have been synthesised from condensation reactions involving pyridine-2,6-dicarboxylic acid (H2dipic), pyridine-2,6-dicarbonyl dichloride or 2,6-diaminopyridine with heterocyclic amine or carboxylic acid precursors. Crystallographic analyses of N,N'-bis(2-pyridyl)pyridine-2,6-dicarboxamide monohydrate (H2L8 x H2O), N,N'-bis[2-(2-pyridyl)methyl]pyridine-2,6-dicarboxamide and N,N'-bis[2-(2-pyridyl)ethyl]pyridine-2,6-dicarboxamide monohydrate revealed extensive intramolecular hydrogen bonding interactions. 2,6-Bis(pyrazine-2-carboxamido)pyridine (H2L6) and 2,6-bis(pyridine-2-carboxamido)pyridine (H2L7) reacted with copper(II) acetate monohydrate to give tricopper(II) complexes [Cu3(L)2(mu2-OAc)2]. X-Ray crystallography confirmed deprotonation of the amidic nitrogen atoms and that the (L6,7)2- ligands and acetate anions hold three copper(II) ions in approximately linear fashion. H2L8. Reacted with copper(II) tetrakis(pyridine) perchlorate to give [Cu(L8)(OH2)]2 x 2H2O, in which (L8)2- was tridentate through the nitrogen atoms of the central pyridine ring and the deprotonated carboxamide groups at one copper centre, with one of the terminal pyridyl rings coordinating to the other copper atom in the dimer. The corresponding reaction using H2L7 gave [Cu3(L7)2(py)2][ClO4]2, which transformed during an attempted recrystallisation from ethanol under aerobic conditions to a tetracopper(II) complex [Cu4(L7)2(L7-O)2].  相似文献   

3.
In the title compound, [Mn(C8H7O2)2(C12H9N3)], the manganese(II) centre is surrounded by three bidentate chelating ligands, namely, one 2‐(2‐pyridyl)benzimidazole ligand [Mn—N = 2.1954 (13) and 2.2595 (14) Å] and two p‐toluate ligands [Mn—O = 2.1559 (13)–2.2748 (14) Å]. It displays a severely distorted octahedral geometry, with cis angles ranging from 58.87 (4) to 106.49 (5)°. Intermolecular C—H...O hydrogen bonds between the p‐toluate ligands link the molecules into infinite chains, and every two neighbouring chains are further coupled by N—H...O and C—H...O hydrogen bonds between the 2‐(2‐pyridyl)benzimidazole and p‐toluate ligands, leading to an infinite ribbon‐like double‐chain packing mode. The complete solid‐state structure can be described as a three‐dimensional supramolecular framework, stabilized by these intermolecular hydrogen‐bonding interactions and possible C—H...π interactions, as well as stacking interactions involving the 2‐(2‐pyridyl)benzimidazole ligands.  相似文献   

4.
The first monocarboxylate-substituted 4,4'-bipyridine ligand, 4,4'-bipyridine-2-carboxylic acid (4-(pyridin-4-yl)pyridine-2-carboxylic acid (PPCAH)), has been successfully synthesized from 4,4'-bipyridine. Reactions with transition metals zinc and manganese were used to establish the coordination characteristics of the product, 4,4'-bipyridine-2-carboxylic acid, and of the synthetic intermediate, 2-methyl-4,4'-bipyridine, by single-crystal X-ray diffraction. The ligand PPCAH is useful for the formation of metal-containing building blocks that can be used in the assembly of mixed-metal framework materials. The synthesis and structure of one such mixed-metal coordination polymer, Cu(PPCA)(2)HgI(2), is also presented.  相似文献   

5.
The effects of the composition of a heterogeneous catalytic system based on Fe2SO4 · 7H2O, picolinic acid (pyridine-2-carboxylic acid), and pyridine and system preparation procedures on the selectivity of oxidation of 1,3-dimethyladamantane (1,3-DMA) with an aqueous 30% hydrogen peroxide solution in an aqueous acetonitrile solvent at room temperature and ambient pressure were studied. The yields of 1,3-DMA oxidation products were increased from fractions of a percent in initial experiments to the tens of percent under new catalytic conditions of final experiments. It was found that three different mechanisms can occur in the test system under various conditions; conceivably, these are radical, ion-molecule, and radical-cation mechanisms. In the first case, a statistical mixture of the products of 1,3-DMA oxidation at tertiary and secondary C-H bonds was formed. In the second and third cases, oxidation occurred only at secondary and tertiary C-H bonds, respectively. Unlike the first two cases, the selectivity of 1,3-DMA oxidation to a tertiary alcohol under conditions of the Gif-type test system corresponds to the selectivity of biological oxidation and, to the best of our knowledge, is the first example of this kind.  相似文献   

6.
The anaerobic oxidation of methyl p-toluate by cobalt(III) in acetic acid was investigated. Observed products were 4-carbomethoxybenzaldehyde (2), 4-carbomethoxybenzoic acid (3), 4-carbomethoxybenzyl acetate (1), 4,4'-dicarbomethoxybibenzyl (6), methyl 2,4-dimethylbenzoate (8), and methyl 3,4-dimethylbenzoate (9). Deuterium isotope labeling showed that 2 was not formed from 1, but appeared to be formed directly from methyl p-toluate via 4-carbomethoxybenzyl alcohol (5). The ratio of (2 + 3) to 1 was 0.5 with [py3Co3O(OAc)5OH[PF6] and 1.0 with cobaltic acetate. Cobaltic acetate was generated in situ by the reaction of cobaltous acetate and peracetic acid. When the oxidation was carried out in the presence of chromium (0.05 equiv based on cobalt), the ratio increased dramatically and no 6 was observed. Other transition metals such as vanadium, molybdenum, and manganese had a similar effect, but were not as effective as chromium. Chromium was observed to form a mixed-metal cluster complex with cobalt. Treatment of an acetic acid solution of cobaltous acetate and methyl isonicotinate with K2CrO4 produced a solid tentatively identified as [(MIN)3Co2CrO(OAc)6][CrO4H] (MIN = methyl isonicotinate). The selectivity for the oxidation of methyl p-toluate exhibited by the mixed-metal cluster complex was similar to that observed by the addition of chromium to oxidations using [py3Co3O(OAc)5OH[PF6].  相似文献   

7.
Addition of 2 equiv of Ce(4+) to the dimeric ruthenium mu-oxo ion cis,cis-[(bpy)(2)Ru(OH(2))](2)O(4+) (formal oxidation state III-III, subsequently denoted [3,3]) or addition of 1 equiv of Ce(4+) to the corresponding [3,4] ion gave near-quantitative conversion to the [4,4] ion, confirming our recent assignment of this oxidation state as an accumulating intermediate during water oxidation by the cis,cis-[(bpy)(2)Ru(O)](2)O(4+) ([5,5]) ion. The rates of water exchange at the cis-aqua positions in the [3,3] and [3,4] ions were investigated by incubating H(2)(18)O-enriched samples in normal water for predetermined times, then oxidizing them to the [5,5] state and measuring by resonance Raman (RR) spectroscopy changes in the magnitudes of the O-isotope sensitive bands at 780 and 818 cm(-1). These bands have been assigned to Ru=(18)O and Ru=(16)O stretching modes, respectively, for ruthenyl bonds formed by deprotonation of the aqua ligands upon oxidation to the [5,5] state. An intermediate accumulated during the course of the isotope exchange reaction that gave a [5,5] ion possessing both approximately 782 and approximately 812 cm(-1) bands; this spectrum was assigned to the mixed-isotope species, (bpy)(2)Ru((16)O)(16)ORu((18)O)(bpy)(2)(4+). Kinetic analysis of solutions at various levels of oxidation indicated that only the [3,3] ion underwent substitution; the exchange rate constant obtained in 0.5 M trifluoromethanesulfonic acid, 23 degrees C, was 7 x 10(-3) s(-1), which is (10(3)-10(5))-fold larger than rate constants measured for anation of monomeric (bpy)(2)Ru(III)X(H(2)O)(3+) ions bearing simple sigma-donor ligands (X).  相似文献   

8.
Pyridine-2-carboxylic acid, pyridine-2,3-dicarboxylic acid, and pyridine-2,4-dicarboxylic acid or their [(Ph(3)P)(2)N](+) salts react with the triply bonded dirhenium(II) complex Re(2)Cl(4)(mu-dppm)(2) (dppm = Ph(2)PCH(2)PPh(2)) in refluxing ethanol to afford unsymmetrical substitution products of the type Re(2)(eta(2)-N,O)Cl(3)(mu-dppm)(2), where N,O represents a chelating pyridine-2-carboxylate ligand (N,O = O(2)C-2-C(5)H(4)N (1), O(2)C-2-C(5)H(3)N(-3-CO(2)Et) (3), or O(2)C-2-C(5)H(3)N(-4-CO(2)H) (4)). The carboxylate groups in the 3- and 4- positions are not bound to the metal centers; in the case of 3 this group undergoes esterification in the refluxing ethanol solvent. Structure determinations have shown that 1, 3, and 4 possess similar structures in which there is an axial Re-O (carboxylate) bond (collinear with the Re(triple bond)Re bond) and the mu-dppm ligands are bound in a trans,cis fashion to the two Re atoms which have the ligand atom arrangement [P(2)NOClReReCl(2)P(2)]. The tridentate dianionic pyridine-2,6-dicarboxylate ligand (dipic) reacts with Re(2)Cl(4)(mu-dppm)(2) in ethanol at room temperature to give a compound Re(2)(dipic)Cl(2)(mu-dppm)(2) (6) in which the dipic ligand is bound in a symmetrical eta(3)-(O,N,O) fashion to one Re atom, with the N atom in an axial position (collinear with the Re(triple bond)Re bond) and with preservation of the same trans,trans coordination of the mu-dppm ligands that is present in Re(2)Cl(4)(mu-dppm)(2). Under reflux conditions, this kinetic product isomerizes to the thermodynamically favored isomer 5 with an unsymmetrical structure in which the dipic ligand chelates to one Re atom (as in 1, 3, and 4) and uses its other carboxylate group to bridge to the second Re atom. The isomerization of 6 to 5, which also results in a change in the coordination of the pair of mu-dppm ligand to trans,cis, is believed to occur by a partial "merry-go-round" process, a mechanism that probably explains the structures of the thermodynamic products 1, 3, and 4. The reaction of Re(2)Cl(4)(mu-dppm)(2) with pyridine-3-carboxylate gives the trans isomer of Re(2)(mu:eta(2)-O(2)C-3-C(5)H(4)N)(2)Cl(2)(mu-dppm)(2) (2) in which a pair of carboxylate bridges are present and the pyridine N atom is not coordinated. Single-crystal X-ray structural details are reported for 1-6.  相似文献   

9.
Syntheses for 2-(pyridyl N-oxide) methylphosphonic acid, 1-H, and 2-(pyridyl N-oxide) hydroxymethylphosphonic acid, 4-H, are described, and the crystal structures of both ligands are presented. Combination of these ligands with freshly prepared erbium hydroxide results in the formation of the isostructural complexes Er(L(-))(3)(LH).8H(2)O. The crystal structure determinations of the complexes show that extensive hydrogen bonding links the individual eight coordinate Er(L(-))(3)(LH) molecular units into a 3-D structure.  相似文献   

10.
The twelve-connected metal-organic frameworks {[Ni(3)(OH)(L)(3)].n(solv)}(infinity) and {[Fe(3)(O)(L)(3)].n(solv)}(infinity) [LH(2) = pyridine-3,5-bis(phenyl-4-carboxylic acid)] have been prepared and characterised: these materials can be desolvated to form porous materials that show adsorption of H(2) up to 4.15 wt% at 77 K.  相似文献   

11.
Discrete dinuclear metallo-macrocyclic complexes have been prepared from the flexible amide ligand N-6-[(3-pyridylmethylamino)carbonyl]pyridine-2-carboxylic acid (L1-CH(3)), and its more rigid analogue, N-6-[(3-pyridylamino)carbonyl]pyridine-2-carboxylic acid (L3-CH(3)). With ligands L1-CH(3) and L3-CH(3), discrete dinuclear metallo-macrocyclic complexes with the generic formula [Cu(2)(L1-CH(3))(2)(X)(2)(Y)(2)] (7, X = NO(3); 8, X = Cl, Y = H(2)O; 9, X = ClO(4), Y = CH(3)OH) and [Cu(2)(L3-CH(3))(2)(X)(2)(Y)(2)] (10, X = NO(3), Y = H(2)O; 11, X = ClO(4), Y = CH(3)OH) are obtained. For complexes 7-9, containing the more flexible link L1-CH(3), these complexes are cleft-shaped and hinged at the methylene spacer, which allows the cleft to widen and contract to accommodate different packing modes in the solid-state. In contrast, the rigid link L3-CH(3) gives near planar metallo-macrocyclic structures. These metallo-macrocyclic compounds may be useful building blocks for coordination polymers.  相似文献   

12.
A series of complexes trans-[PdCl(2)L(2)] has been prepared by the reaction of [PdCl(2)(PhCN)(2)] and/or Na(2)[PdCl(4)] with L = pyridine or quinoline ligands having one or two carboxylic acid groups. These complexes can form 1-D polymers through O-H.O hydrogen bonding between the carboxylic acid groups, as demonstrated by structure determinations of [PdCl(2)(NC(5)H(4)-4-COOH)(2)], [PdCl(2)(NC(5)H(4)-3-COOH)(2)], and [PdCl(2)(2-Ph-NC(9)H(5)-4-COOH)(2)]. In some cases, solvation breaks down the O-H.O hydrogen-bonded structures, as in the structures of [PdCl(2)(NC(5)H(4)-3-COOH)(2)].2DMSO and [PdCl(2)(2-Ph-NC(9)H(5)-4-COOH)(2)].4DMF, while pyridine-2-carboxylic acid underwent deprotonation to give the chelate complex [Pd(NC(5)H(4)-2-C(O)O)(2)]. The complexes trans-[PdCl(2)L(2)], L = pyridine-3,5-dicarboxylic acid or 2,6-dimethyl pyridine-3,5-dicarboxylic acid, self-assembled to give 2-D sheet structures, with hydrogen bonding between the carboxylic acid groups mediated by solvate methanol or water molecules. In the cationic complexes [PdL'(2)L(2)](2+) (L'(2) = Ph(2)PCH(2)PPh(2), Ph(2)P(CH(2))(3)PPh(2); L = pyridine carboxylic acid; anions X(-) = CF(3)SO(3)(-)), hydrogen bonding between the carboxylic acid groups and anions or solvate acetone molecules occurred, and only in one case was a polymeric complex formed by self-assembly.  相似文献   

13.
Hsieh WY  Liu S 《Inorganic chemistry》2005,44(6):2031-2038
This report describes the synthesis, characterization, and X-ray crystal structures of two Mn(III) complexes, Mn(DMHP)3 x 12H2O and Mn(DMHP)2Cl x 0.5H2O (DMHP = 1,2-dimethyl-3-hydroxy-4-pyridinone). Mn(DMHP)2Cl was prepared from the reaction of Mn(II) chloride with 2 equiv of DMHP under reflux in the presence of triethylamine. Mn(DMHP)3 was obtained by reacting Mn(II) acetate with 3 equiv of DMHP in the presence of sodium acetate. Mn(DMHP)3 could also be prepared by reacting Mn(OAc)3 x 2H2O with 3 equiv of DMHP in the presence of triethylamine. Both Mn(III) complexes have been characterized by elemental analysis, infrared spectroscopy, electronic paramagnetic resonance, electrospray ionization spectroscopy, electrochemical method, and X-ray crystallography. The X-ray crystal structure of Mn(DMHP)2Cl x 0.5H2O revealed a rare example of five-coordinated Mn(III) complexes with two bidentate ligands and a square pyramidal coordination geometry. Surprisingly, the average Mn-O (hydroxy) bond distance in Mn(DMHP)2Cl x 0.5H2O is approximately 0.025 A longer than that of the average Mn-O (carbonyl) bond, suggesting an extensive delocalization of electrons in the two pyridinone rings. The structure of Mn(DMHP)3 x 12H2O, a rare example of six-coordinate high-spin Mn(III) complexes without Jahn-Teller distortion, is isostructural to M(DMHP)3 x 12H2O (M = Al, Ga, Fe, and In). The electrochemical data for Mn(DMHP)3 suggests that the Mn(III) oxidation state is highly stabilized by three DMHP ligands. DMHP has the potential as a chelator for the removal of excess intracellular Mn and the treatment of chronic Mn toxicity.  相似文献   

14.
An H  Han Z  Xu T 《Inorganic chemistry》2010,49(24):11403-11414
A family of three-dimensional (3D) architectures based on lanthanide-substituted polyoxometaloborate building blocks, [LnK(H(2)O)(12)][Ln(H(2)O)(6)](2)[(H(2)O)(4)LnBW(11)O(39)H](2)·20H(2)O (Ln = Ce 1, Nd 2), H(2)K(2)(H(2)O)(n)[(C(6)NO(2)H(5))Ln(H(2)O)(5)](2)[(H(2)O)(4)LnBW(11)O(39)H](2)·18H(2)O (Ln = Ce n = 8 3, Nd n = 9 4, C(6)NO(2)H(5) = pyridine-4-carboxylic acid), have been synthesized and characterized by elemental analysis, IR spectroscopy, thermogravimetric (TG) analysis, powder X-ray diffraction and single crystal X-ray diffraction. Compounds 1 and 2 are isostructural, and are built up of lanthanide-substituted double-Keggin-type polyoxoanions [{(H(2)O)(4)Ln(BW(11)O(39)H)}(2)](10-) linked by Ln(3+) cations to form a 3D open framework with one-dimensional (1D) channels. The polyoxoanion [{(H(2)O)(4)Ln(BW(11)O(39)H)}(2)](10-) consists of two α(1)-type mono-Ln-substituted Keggin anions, constituted by two [BW(11)O(39)H](8-) polyoxoanions and two lanthanide cations. When pyridine-4-carboxylic acid ligand was added to the reaction system of 1, 2, compounds 3, 4 were obtained. Isostructural compounds 3 and 4 are constructed from the lanthanide-substituted double-Keggin-type polyoxoanions [{(H(2)O)(4)Ln(BW(11)O(39)H)}(2)](10-) linked by the [Ln(C(6)NO(2)H(5))](3+) bridges to form a 3D channel framework. From the topological point of view, the 3D nets of compounds 1-4 are binodal with three- and six-connected nodes and exhibit a rutile topology. Compounds 1-4 represent the examples of 3D architectures based on lanthanide-substituted polyoxometalates. The magnetic properties of compounds 1-4 have been studied by measuring their magnetic susceptibility in the temperature range 2-300 K.  相似文献   

15.
The trinuclear manganese complex [Mn(3)O(4)(phen)(4)(H(2)O)(2)](NO(3))(4).2.5H(2)O, 1 (where, phen = 1,10-phenanthroline), has been synthesized by the Ce(IV) oxidation of a concentrated solution of manganese(II) acetate and phen in 1.6 N nitric acid. The complex crystallizes in the triclinic space group P&onemacr; with a = 10.700(2) ?, b = 12.643(3) ?, c = 20.509(4) ?, alpha = 78.37(3) degrees, beta = 83.12(3) degrees, gamma = 82.50(3) degrees, and Z = 2. The structure was solved by direct methods and refined by least-squares techniques to the conventional R (R(w)) factors of 0.055 (0.076) based on 4609 unique reflections with F(o) >/= 6.0sigma(F(o)). The structure of the cation consists of an oxo-bridged Mn(3)O(4)(4+) core, with the geometry of the manganese atoms being octahedral. The coordination polyhedron of one of the manganese atoms (Mn(1)) consists of two &mgr; oxo ligands and two pairs of nitrogen atoms of two phen moieties, whereas that of each of the remaining two manganese atoms consists of three &mgr;-oxo ligands, two nitrogen atoms of a phen moiety, and the oxygen atom of a water molecule. The complex represents the second example for water coordination to manganese(IV) centers in complexes with a Mn(3)O(4)(4+) core. Optical spectra in ligand buffer (pH 4.5) reveal complete conversion of the complex into a Mn(III)Mn(IV) species. The observed room-temperature (298 K) magnetic moment of 3.75 &mgr;(B) indicates the presence of strong antiferromagnetic coupling in the complex.  相似文献   

16.
The anions [M(VI)O(O(2))(2)(OR)](-) and [M(VI)O(3)(OR)](-)(M = Cr, Mo, W; R = H, Me, Et, (n)Pr, (i)Pr) were transferred to the gas phase by the electrospray process. Their decomposition was examined by multistage mass spectrometry and collisional activation experiments. The molybdate and tungstate anions [M(VI)O(O(2))(2)(OR)](-) underwent parallel elimination of aldehyde (ketone) and dioxygen while the equivalent chromate underwent loss of dioxygen only. The peroxo ligands were the source of oxidising equivalents in both reactions. For each alkoxo ligand, the total yield of aldehyde for the tungstate system exceeded that for the molybdate system. Collisional activation of [M(VI)O(3)(OMe)](-) led to clean elimination of formaldehyde with the metal centre supplying the oxidising equivalents. For larger alkoxo ligands, only the chromate centre eliminated aldehyde, while the molybdate and tungstate centres underwent clean loss of alkene. Threshold activation voltages indicated that the peroxo ligands of [W(VI)O(O(2))(2)(OMe)](-) are more oxidising than the tungstate centre of [W(VI)O(3)(OMe)](-). (2)H and (18)O isotope tracing experiments were consistent with a formal hydride transfer mechanism operating for oxidation of alkoxo ligand in each system. In the solid state, anions [M(VI)O(O(2))(2)(OR)](-) are typically pentagonal pyramidal (oxo in apical site) while [M(VI)O(3)(OR)](-) are tetrahedral. The data indicate that an equatorial ligand position is the site of alkoxo oxidation in [M(VI)O(O(2))(2)(OR)](-) anions. Comparisons of the gas phase data with those for a solution phase system are made.  相似文献   

17.
The kinetics of oxidation of the neutralized -hydroxy acids: lactic, -hydroxyisobutyric, mandelic, benzilic and atrolactic acids by tris(pyridine-2-carboxylato)manganese(III) have been studied. The reactions were carried out in a Na(pic)-picH [Na(pic) = sodium salt of pyridine-2-carboxylic acid and picH = pyridine-2-carboxylic acid] buffer medium in the 4.89–6.10pH range. The oxidation rate was found to be independent of pH, and rate follows the order: benzilate > mandelate >atrolactate>lactate > -hydroxy isobutyrate. The oxidation products are MeCHO, Me2CO, PhCHO, Ph2CO and PhCOMe for the respective reactions. A mechanism is proposed involving intermediate formation of hepta-coordinated MnIII complexes in a fast step. The complexes then decompose to give free radicals and MnII in the rate determining step. The free radicals subsequently react with another molecule of the MnIII species to give the respective carbonyl compounds in a fast step.  相似文献   

18.
在强碱性条件下直接引入二价锰源, 一步合成出高纯度的纳米级Mn-ZSM-5分子筛. 通过X射线粉末衍射(XRD)、 傅里叶变换红外光谱(FTIR)、 扫描电子显微镜(SEM)、 29Si核磁共振波谱(29Si NMR)、 电感耦合等离子光谱(ICP)和氮气吸附-脱附等测试方法对其进行结构表征和性能测试. 结果显示, 锰原子存在于沸石骨架中, 产物为具有MFI结构的纳米级分子筛. 使用苯乙烯氧化反应作为探针反应, 以过氧化氢为氧化剂, 结果显示苯乙烯转化率达到84.98%, 转化数(TON)为208, 环氧苯乙烷选择性为87.62%, 产率为74.46%.  相似文献   

19.
Experimental studies by Shul'pin and co-workers have shown that vanadate anions in combination with pyrazine-2-carboxylic acid (PCA identical with pcaH) produce an exceptionally active complex that promotes the oxidation of alkanes and other organic molecules. Reaction of this complex with H2O2 releases HOO* free radicals and generates V(IV) species, which are capable of generating HO* radicals by reaction with additional H2O2. The oxidation of alkanes is initiated by reaction with the HO* radicals. The mechanism of hydrocarbon oxidation with vanadate/PCA/H2O2 catalyst has been studied using density functional theory. The proposed model reproduces the major experimental observations. It is found that a vanadium complex with one pca (PCA identical with pcaH) and one H2O2 ligand is the precursor to the species responsible for HOO* generation. It is also found that species containing two pca ligands and an H2O2 molecule do not exist in the solution, in contradiction to previous interpretations of experimental observations. Calculated dependences of the oxidation rate on initial concentrations of PCA and H2O2 have characteristic maxima, the shapes of which are determined by the equilibrium concentration of the active species. Conversion of the precursors requires hydrogen transfer from H2O2 to a vanadyl group. Our calculations show that direct transfer has a higher barrier than pca-assisted indirect transfer. Indirect transfer occurs by migration of hydrogen from coordinated H2O2 to the oxygen of a pca ligand connected to the vanadium atom. The proposed mechanism demonstrates the important role of the cocatalyst in the reaction and explains why H2O2 complexes without pca are less active. Our work shows that the generation of HOO* radicals cannot occur via cleavage of a V-OOH bond in the complex formed directly from the precursors, as proposed before. The activation barrier for this process is too high. Instead, HOO* radicals are formed via a sequence of additional steps involving lower activation barriers. The new mechanism for free radical generation underestimates the observed rate of hexane oxidation by less than an order of magnitude; however, the calculated activation energy (67-81 kJ/mol) agrees well with that determined experimentally (63-80 kJ/mol).  相似文献   

20.
The reaction of MnCl2.4H2O (3 equiv), pyridine-2,6-dimethanol (pdmH2) (10 equiv), and NaN3 (10 equiv) in MeOH/MeCN (1:2 v/v) with NMe4OH (1 equiv) gave [Mn25O18(OH)2(N3)12(pdm)6(pdmH)6](Cl)2.12MeCN (1.12MeCN) in approximately 30% yield. The cation of complex 1 comprises five Mnx layers of three types in an ABCBA arrangement. Fitting of variable-temperature and -field magnetization data establishes that 1 has an S = 51/2 ground state, the largest value for a molecular species. The complex also displays hysteresis loops below 0.6 K in magnetization vs applied field sweeps, establishing it as the largest spin single-molecule magnet to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号