首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Functional polystyrene (PS) crosslinked microbeads were developed by dispersion polymerization as fluorescent molecularly imprinted polymers (MIPs) having cavities with specific recognition sites. The functional azobenzene molecule modified with pyridine was self‐assembled with Pyrenebutyric acid (template molecules), and introduced during the second stage of dispersion polymerization of polystyrene. The template molecule was removed from MIP by Soxhlet using acetonitrile as solvent. Non imprinted polymer (NIP) having no template was also synthesized for comparative study. Fluorescence spectroscopy could be used as a tool to derive insight into the location of the template molecules on the MIP or NIP. The template molecules were adsorbed on the surface of the NIPs during binding studies, which was evidenced from the pyrene excimeric emission observed at 440 nm. The template binding efficiency of the NIPs were much lower compared to MIPs. Pyrene emission from MIP upon rebinding showed typical monomeric emission in the 375–395 nm range, confirming its location in isolated cavities. In rebinding studies of the template molecules, the MIPs selectively took up the template for which the cavity was designed, which demonstrated their selectivity towards template molecules. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1558–1565  相似文献   

2.
A series of molecularly imprinted polymers (MIPs) was prepared using quinine as the template molecules by bulk polymerization. The presence of monomer-template solution complexes in non-covalent MIPs systems has been verified by both fluorescence and UV-vis spectrometric detection. The influence of different synthetic conditions (porogen, functional monomer, cross-linkers, initiation methods, monomer-template ratio, etc.) on recognition properties of the polymers was investigated. Scatchard analysis revealed that two classes of binding sites were formed in the imprinted polymer. The corresponding dissociation constants were estimated to be 45.00 micromol l(-1) and 1.42 mmol l(-1), respectively, by utilizing a multi-site recognition model. The binding characteristics of the imprinted polymers were explored in various solvents using equilibrium binding experiments. In the organic media, results suggested that polar interactions (hydrogen bonding, ionic interactions, etc.) between acidic monomer/polymer and template molecules were mainly responsible for the recognition, whereas in aqueous media, hydrophobic interactions had a remarkable non-specific contribution to the overall binding. The specificity of MIP was evaluated by rebinding the other structurally similar compounds. The results indicated that the imprinted polymers exhibited an excellent stereo-selectivity toward quinine.  相似文献   

3.
A comparative study was conducted to study the effects that two different polymerization solvents would have on the properties of imprinted polymer microparticles prepared using precipitation polymerization. Microparticles prepared in chloroform, which previous results indicated was the optimal solvent for molecular imprinting of nitroaromatic explosive compounds, were compared to water, which was hypothesized to decrease water swelling of the polymer and allow enhanced rebinding of aqueous template. The microparticles were characterized and were integrated into a fluorescence sensing mechanism for detection of nitroaromatic explosive compounds. The performance of the sensing mechanisms was compared to illustrate which polymerization solvent produced optimal imprinted polymer microparticles for detection of nitroaromatic molecules. Results indicated that the structures of microparticles synthesized in chloroform versus water varied greatly. Sensor performance studies showed that the microparticles prepared in chloroform had greater imprinting efficiency and higher template rebinding than those prepared in water. For detection of 2,4,6-trinitrotoluene, the chloroform-based fluorescent microparticles achieved a lower limit of detection of 0.1 μM, as compared to 100 μM for the water-based fluorescent microparticles. Detection limits for 2,4-dinitrotoluene, as well as time response studies, also demonstrated that the chloroform-based particles are more effective for detection of nitroaromatic compounds than water-based particles. These results illustrate that the enhanced chemical properties of using the experimentally determined optimal polymerization solvent overcome deformation of imprinted binding sites by water swelling and benefits of using the polymerization solvent for rebinding of the template.  相似文献   

4.
硅胶表面扑灭津分子印迹材料的制备及性能表征   总被引:3,自引:0,他引:3  
以扑灭津为模板分子,在甲苯溶液中经三步反应合成了基于硅胶表面修饰的分子印迹聚合物,并探讨了聚合物制备工艺,验证了聚合物的结构。红外1726cm-1指认印迹膜中的羰基特征峰,元素分析表明印迹材料含碳量18%,N2吸附实验表征印迹膜厚度为0.3nm。应用高效液相色谱-质谱考察了扑灭津和其它3种三嗪农药水溶液中的竞争吸附特性。研究表明:本法制备的表面印迹材料对4种三嗪类农药的吸附均优于参比材料。  相似文献   

5.
We describe the fabrication of polymer nanofibers with entrapped molecularly imprinted polymer (MIP) nanoparticles and study their possible use in a fluorescence-based biosensor application. The MIP was imprinted with the fluorescent amino acid derivative dansyl-L-phenylalanine. Poly(vinyl alcohol) was used as a support for MIP nanoparticles because it is water-soluble and can be spun into very thin fibers. The fibers were characterized by atomic force microscopy and optical microscopy, and fluorescence microscopy was used for the characterization of target binding to the MIP. The fibers show close to 100% recovery upon extraction and rebinding of the target molecule. The selectivity of the system has been demonstrated through competitive binding experiments with nonfluorescent analogues boc-L-phenylalanine and boc-D-phenylalanine.  相似文献   

6.
A new 2D molecular imprinting technique based on nanotemplating and soft-lithography techniques is reported. This technique allows the creation of target-specific synthetic recognition sites on different substrates using a uniquely oriented and immobilized template and the attachment of a molecularly imprinted polymer on a substrate. The molecularly imprinted polymer was characterized by AFM, fluorescence microscopy, and ATR-FTIR. We evaluated the rebinding ability of the sites with theophylline (the target molecule). The selectivity of the molecularly imprinted polymer was determined for the theophylline-caffeine couple. The molecularly imprinted polymer exhibited selectivity for theophylline, as revealed by competitive rebinding experiments. Fluorescence microscopy experiments provided complementary proof of the selectivity of the molecularly imprinted polymer surfaces toward theophylline. These selective molecularly imprinted polymers have the potential for chemical sensor applications. Because of its 2D nature, this novel chemical sensor technology can be integrated with many existing high-sensitivity multichannel detection technologies.  相似文献   

7.
Analysis of recognition of fructose by imprinted polymers   总被引:1,自引:0,他引:1  
Binding of fructose to the fructose imprinted polymer (MIP(Frc)) and pinacol imprinted polymer (control) were studied both in batch and a flow through mode. The influence of the cross-linkers ethylene glycol dimethacrylate (EDMA) and trimethylolpropane trimethacrylate (TRIM) on the binding characteristics was analysed. TRIM cross-linked MIPs showed a lower (unspecific) binding for the control polymer (pinacol imprinted) and higher binding of fructose as compared with the EDMA-MIPs. Furthermore interactions of a TRIM cross-linked molecularly imprinted polymer against fructose and its corresponding template were studied using a thermistor. Label-free detection of fructose was realised in the range of 0.5-10mM. The difference in enthalpy changes between specific binding of fructose to boronic acid moieties of the MIP and non-specific binding to the matrix leads to an 18-fold higher apparent imprinting factor than batch binding studies. Cross-reactivity studies using MIP sensor indicate that the interaction of fructose to MIP generates higher signal than disaccharides. The studies described in this paper demonstrate the potential of direct characterisation of molecular binding events.  相似文献   

8.
In this paper,a surface plasmon resonance(SPR)sensor chip for detection of bovine serum album(BSA)was prepared by electropolymerization of 3-aminophenylboronic acid(3-APBA)based on molecularly imprinted polymer(MIP)technique.The surface morphology of MIP and non-imprinted(NIP)flms were characterized by scanning electroscopy(SEM).SEM images exhibited nanoscale cavities formed on the MIP films surface homogeneously due to the removal of BSA templates.The effects of pH,ion strength of rebinding BSA,the specific binding and selective recognition were studied for MIP films.Results indicated that the BSA-imprinted films exhibited a good adsorption of template protein(0.02–0.8 mg/mL)in0.05 mol/L sodium phosphate buffer at pH 5.0 with the limit of detection(LOD)of 0.02 mg/mL.  相似文献   

9.
A new molecularly imprinted polymer (MIP) for levofloxacin was prepared by the combined use of methacrylic acid and protoporphyrin as functional monomers. The adsorption properties of resultant imprinted polymers were evaluated by equilibrium rebinding experiments. The highest binding capacity of levofloxacin achieved from the optimized imprinted polymer in acetonitrile was 246.26 µmol/g with an imprinting factor of 2.05. A ?uorescence quenching effect was observed when a protoporphyrin‐based imprinted polymer was incubated in the solutions of levofloxacin. The results indicated that the protoporphyrin‐based MIPs were able to create higher binding cavities for template compared with MIPs using only methacrylic acid as a functional monomer. It should be expected that the cooperative use of the protoporphyrin with supplemental different functional monomers may be an alternative to obtain MIP with the improvement of the selectivity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
To obtain the desired specific adsorbents for carbaryl to enrichment, separation, and analysis of trace pesticide residues in environmental water, molecularly imprinted polymer (MIP) microspheres were prepared by precipitation polymerization using carbaryl, methacrylic acid (MAA), ethylene glycol dimethacrylate (EGDMA), azobisisobutyronitrile (AIBN), and acetonitrile as template, functional monomer, cross‐linker, initiator, and porogen, respectively. Molecular modeling software was used to compute rational interaction between the template molecule and function monomer. The adsorption properties of carbaryl in acetonitrile for imprinted microspheres were evaluated by equilibrium rebinding experiments. Scatchard plot analysis revealed that there was one class of binding sites populated in the imprinted polymer microspheres with dissociation constants of 3.3 × 10?2 mol/l and an apparent maximum number of 1.95 µmol/g. The specificity of the imprinted microspheres was investigated by binding analysis using carbaryl and structurally related carbamate pesticides. The results indicated that the obtained imprinted microspheres showed a good selectivity for carbaryl. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
In this study, new molecularly imprinted polymer (MIP) nanoparticles are designed for selective recognition of different drugs used for the treatment of type 2 diabetes mellitus, i.e. sitagliptin (SG) and metformin (MF). The SG‐ and MF‐imprinted polymer nanoparticles are synthesized by free‐radical initiated polymerization of the functional monomers: methacrylic acid and methyl methacrylate; and the crosslinker: ethylene glycol dimethacrylate. The surface morphology of resultant MIP nanoparticles is studied by atomic force microscopy. Fourier transform infrared spectra of MIP nanoparticles suggest the presence of reversible, non‐covalent interactions between the template and the polymer. The effect of pH on the rebinding of antidiabetic drugs with SG‐ and MF‐imprinted polymers is investigated to determine the optimal experimental conditions. The molecular recognition characteristics of SG‐ and MF‐imprinted polymers for the respective drug targets are determined at low concentrations of SG (50–150 ppm) and MF (5–100 ppm). In both cases, the MIP nanoparticles exhibit higher binding response compared to non‐imprinted polymers. Furthermore, the MIPs demonstrate high selectivity with four fold higher responses toward imprinted drugs targets, respectively. Recycled MIP nanoparticles retain 90% of their drug‐binding efficiency, which makes them suitable for successive analyses with significantly preserved recognition features.  相似文献   

12.
分子印迹膜电化学传感器检测土壤中莠去津   总被引:2,自引:0,他引:2  
本文报道了一种对莠去津有识别特性的分子印迹膜的制备,即在含和不含模板分子(莠去津)的情况下,通过循环伏安技术在金电极表面沉积2-巯基苯并咪唑,制备了2-巯基苯并咪唑聚合膜.利用循环伏安法对印迹和非印迹膜行为进行了评价,对分子印迹膜的影响因素进行了筛选和优化.实验表明,该分子印迹膜对莠去津具有良好的选择性和灵敏度.莠去津的还原峰电流与莠去津的浓度在 1.2 ×10 - 8mal/L~8.0 ×10 - 5mol/ L 范围内具有良好的线性关系( r=0.99862),检出限可达 3.0 ×10 - 9mol/ L.将此传感器用于土壤中莠去津的测定,回收率在90.8% ~ 98.2%之间,取得了很好的结果.  相似文献   

13.
By reaction of 7-chloroethyl-theophylline with aminopropylsilanized silica gel we synthesized a 7-chloroethyl-theophylline-immobilized silica gel as template molecule and prepared a molecularly imprinted polymer (MIP-Si), which had special recognition sites to 7-chloroethyl-theophylline. A conventional molecularly imprinted polymer (MIP) using 7-chloroethyl-theophylline as template was also prepared for comparison. Binding abilities to 7-chloroethyl-theophylline and its structural analogs revealed that the MIP-Si shows much higher binding speed and much more binding capacity than the MIP does.  相似文献   

14.
Molecularly imprinted polymer (MIP) was synthesized and applied for the extraction of chicoric acid from Chicory herb (Chicorium intybus L.). A computational study was developed to find a suitable template to functional monomer molar ratio for MIP preparations. The molar ratio was chosen based on the comparison of the binding energy of the complexes between the template and functional monomers. Based on the computational results, eight different polymers were prepared using chicoric acid as the template. The MIPs were synthesized in a non-covalent approach via thermal free-radical polymerization, using two different polymerization methods, bulk and suspension. Batch rebinding experiments were performed to evaluate the binding properties of the imprinted polymers. The best results were obtained with a MIP prepared using bulk polymerization with 4-vinylpyridine (4-VP) as the functional monomer and ethylene glycol dimethacrylate (EGDMA) as the crosslinker with a molar ratio of 1:4:20. The best MIP showed selective binding ability toward chicoric acid in the presence of the template’s structural analogues, caffeic acid, caftaric acid and chlorogenic acid.  相似文献   

15.
以5-(4-羟基苯基)-10,15,20-三苯基卟啉锌为印迹分子,4-乙烯基吡啶为功能单体,乙二醇二甲基丙烯酸酯为交联剂,合成了具有金属卟啉识别能力的分子印迹聚合物.紫外可见滴定光谱研究表明,功能单体与印迹分子在聚合前形成1:1的配合物.通过吸附试验、荧光光谱及斯卡查特分析法,考察了分子印迹聚合物对锌卟啉化合物的识别性能.结果表明,印迹聚合物对结构类似的卟啉化合物具有良好的识别能力,对印迹分子荧光性能的影响远大于其对应的非印迹聚合物.在浓度较低时,印迹聚合物对印迹分子的结合常数和最大结合量分别为:1.61×106L/mol和3.22×10-5mol/g.  相似文献   

16.
The successful molecular imprinting of 2-aminopyridine (2-apy) in bulk polymerisations of acrylic and sol-gel based polymers has been achieved. Both polymeric systems reveal varying degrees of affinity in rebinding the original template as well as a number of structural analogues. Rebinding was conducted in chloroform, acetonitrile and methanol in order to assess the role of hydrogen bonding in imprinting. The acrylic imprinted polymer retained approximately 50% of the template in rebinding studies in chloroform compared to 100% for the sol-gel. However, this higher affinity for the sol-gel was accompanied by a higher degree of non-specific binding. While the acrylic polymer performed poorly in acetonitrile, the sol-gel maintained a high degree of discrimination.The acrylic polymer exhibited little discrimination between imprinted and reference polymers for 3-aminopyridine (3-apy) indicating the high selectivity of the MIP polymer for 2-apy relative to 3-apy. This selectivity was reduced in acetonitrile. Selectivity of the sol-gel for 2-apy in chloroform was poor as 3-apy was retained to a similar degree. Comparable results were obtained in acetonitrile. 4-Aminopyridine (4-apy) bound strongly to all polymers in all solvents and proved very difficult to remove due to the high degree of non-specific binding for both polymeric matrices.  相似文献   

17.
环丙沙星分子印迹聚合物的合成及识别性能研究   总被引:1,自引:0,他引:1  
采用分子印迹技术合成了以环丙沙星为印迹分子,以甲基丙烯酸和4-乙烯基吡啶同时为功能单体的分子印迹聚合物。运用平衡结合实验研究了印迹聚合物的吸附特性和选择识别能力。Scatchard分析表明,在所研究的浓度范围内,分子印迹聚合物中形成了两类不同的结合位点。底物选择实验表明,这种聚合物对环丙沙星呈现高的选择结合能力。  相似文献   

18.
以锌原卟啉(ZnPP)为功能单体,甲基丙烯酸为共功能单体合成了生物碱基———胞嘧啶的分子印迹聚合物.通过静态吸附紫外检测的方法,对印迹和非印迹聚合物与胞嘧啶及腺嘌呤、尿嘧啶、胸腺嘧啶的结合特性分别进行了对比,分子印迹聚合物(MIP)与非分子印迹聚合物(NMIP)对胞嘧啶的吸附率差值为20.8%,远远高于其他三种碱基,说明MIP对胞嘧啶具有分子识别能力,实现了对胞嘧啶的分子识别.  相似文献   

19.
分子印迹是制备对特定分子具有专一性结合能力的聚合物的技术,所制备的聚合物被称为分子印迹聚合物(Molecularly imprinted polymers,MIPs),此类聚合物在分离提纯、模拟酶和传感器等方面均显示出广阔的应用前景,迄今,小分子化合物的印迹技术已经十分成熟。  相似文献   

20.
表面分子印迹聚合物纳米线用于蛋白质的特异性识别   总被引:2,自引:0,他引:2  
手性配体交换色谱是拆分手性化合物,特别是氨基酸和羟基酸对映体的一种有效方法,通常以光活性氨基酸或其衍生物为手性选择子,可通过键合及涂渍制备手性固定相,也可作为流动相添加剂来实现手性配体交换色谱分离分析,配体交换键合固定相需要完成载体和手性选择子之间的偶联,键合量因受到载体和制备条件的影响而较难控制,且柱效较低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号