首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aslan K  Malyn SN  Geddes CD 《The Analyst》2007,132(11):1112-1121
We describe an exciting opportunity for Metal-Enhanced Fluorescence (MEF)-based surface assays using an angular-ratiometric approach to the observed enhanced emission from fluorophores in close proximity to silver colloids deposited on glass substrates. This approach utilizes the radiationless energy transfer (coupling) between the excited states of the fluorophore and the induced surface plasmons of the silver colloids, and the subsequent angular-dependent fluorescence emission from the fluorophore-silver colloid system. Since MEF is related to surface plasmons' ability to scatter light, angular-dependent light scattering from three different silvered surfaces and glass substrates were investigated using two common excitation angles, 45 and 90 degrees . The scattered light from silvered surfaces with a high loading was observed at wider angles on both sides of the glass substrates, while forward scattering (from the back of the glass) was dominant for the silvered surfaces with low loading, as explained by both Mie and Rayleigh theories. When silver colloids were placed between the fluorophore and glass interface, the coupled fluorescence emission through the higher refractive index glass (and in air), increased in an angular-dependent fashion, following closely the angular-dependent light scattering pattern of the silver colloids themselves. Similar observations for fluorescence emission from fluorophores deposited onto glass surfaces alone were made, but at much narrower angles on both sides of the fluorophore-glass interface and were simply explained by Lambert's cosine law. As the loading of silver on glass was increased, the enhanced fluorescence emission was observed at wider angles (towards 0 and 180 degrees ) at both sides of the silvered surfaces. Glass surfaces without silver colloids were used as control samples to demonstrate the benefits of MEF for enhancing fluorescence signatures in an elegant, angular-dependent fashion. Finally, the utility of the angular-dependent MEF phenomenon for intensity-based angular-ratiometric surface assays is demonstrated.  相似文献   

2.
Metal-Enhanced Fluorescence (MEF) effects from different density silver island films (SiFs) and the effects of far-field excitation irradiance on the observed enhancement of fluorescence were studied. It is shown that MEF non-linearly depends on silver nanoparticle (NP) size/density, reaching a maximum value for SiFs made at a deposition time (DT) of ~5 minutes, i.e. just before SiFs become continuous. Numerical simulations of the silver-islands growing on glass revealed that the near-field magnitude depends non-linearly on size and interparticle distance exhibiting dramatic enhancement at ~10 nm distance between the NPs. In addition, a remarkable effect of modulation in MEF efficiency by far-field excitation irradiance has been observed, which can be correlated well with numerical simulations that show an excitation power volume dependence. The near-field volume changes non-linearly with far-field power. This unique observation has profound implications in MEF, which has rapidly emerged as a powerful tool in the biosciences and ultimately allows for tunable fluorescence enhancement factors.  相似文献   

3.
We describe an exciting opportunity for affinity biosensing using a ratiometric approach to the angular-dependent light scattering from bioactivated and subsequently aggregated noble metal colloids. This new model sensing platform utilizes the changes in particle scattering from very small colloids, which scatter light according to traditional Rayleigh theory, as compared to the changes in scattering observed by much larger colloidal aggregates, formed due to a bioaffinity reaction. These larger aggregates no longer scatter incident light in a Cos(2) theta dependence, as is the case for Rayleigh scattering, but instead scatter light in an increased forward direction as compared to the incident geometry. By subsequently taking the ratio of the scattered intensity at two angles, namely 90 degrees and 140 degrees , relative to the incident light, we can follow the association of biotinylated bovine serum albumin-coated 20 nm gold colloids, cross-linked by additions of streptavidin. This new model system can be potentially applied to many other nanoparticle assays and has many advantages over traditional fluorescence sensing and indeed light-scattering approaches. For example, a single nanoparticle can have the equivalent scattered intensity as 10(5) fluorescing fluorescein molecules substantially increasing detection; the angular distribution of scattered light from noble metal colloids is substantially easier to predict as compared to fluorescence; the scattered light is not quenched by biospecies; the ratiometric measurements described here are not dependent on colloid concentration as are other scattering techniques; and finally, the noble metal colloids are not prone to photodestruction, as is the case with organic fluorophores.  相似文献   

4.
We report here the use of plasmonic metal nanostructures in the form of silver island films (SiFs) to enhance the fluorescence emission of five different phycobiliproteins. Our findings clearly show that the phycobiliproteins display up to a 9-fold increase in fluorescence emission intensity, with a maximum 7-fold decrease in lifetime when they are assembled as a monolayer above SiFs, as compared to a monolayer assembled on the surface of amine-terminated glass slides of the control sample. The study was also repeated with a thin liquid layer of the phycobiliproteins sandwiched between two glass substrates (and a SiFs and a glass substrate) clamped together. Similarly, the results show a maximum 10-fold increase in fluorescence emission intensity coupled with a 2-fold decrease in lifetime of the phycobiliproteins in the SiF-glass setup as compared to the glass control sample, implying that near-field enhancement of phycobiliprotein emission can be attained both with and without chemical linkage of the proteins to the SiFs. Hence, our results clearly show that metal-enhanced fluorescence (MEF) can potentially be employed to increase the sensitivity and detection limit of the plethora of bioassays that employ phycobiliproteins as fluorescence labels, such as in fluoro-immunoassays where the assay can be tethered on the surface of SiFs, and also in flow cytometry where analytes in the liquid phase could potentially flow through channels coated with SiFs without actually being attached to the silver.  相似文献   

5.
We have applied the light-scattering equation caused by liquid-crystal (LC)-director fluctuations as derived by De Gennes [1] to the case where the polarization direction of the incident light is at an arbitrary angle with respect to the LC directors within the cell. Based on the De Gennes’s equation, we have used an out-of-plane (OPR) cell-rotation method to measure the pretilt angles of a tilted-homogeneously aligned LC cell. Our measured pretilt angles are in good agreement with that obtained by the published OPR-rotation method [2] based on a different mechanism. Our method is simple in setup and requires no complicated data-fitting calculations when the pretilt angles are below about 30°. In addition, there is no need to know cell parameters except the ordinary and extraordinary refractive indices of the LC medium at the wavelength of incident light.  相似文献   

6.
Molecular beam scattering dynamics at the gas-liquid interface are investigated for CO2 (E(inc) = 10.6(8) kcal/mol) impinging on liquid perfluoropolyether (PFPE), with quantum state (v, J) populations measured as a function of incident (theta(inc)) and final (theta(scat)) scattering angles. The internal state distributions are well-characterized for both normal and grazing incident angles by a two-component Boltzmann model for trapping desorption (TD) and impulsive scattering (IS) at rotational temperatures T(rot)(TD/IS), where the fractional TD probability for CO2 on the perfluorinated surface is denoted by TD and IS densities (rho) as alpha = rhoTD/(rhoTD + rhoIS). On the basis of an assumed cos(theta(scat)) scattering behavior for the TD flux component, the angular dependence of the IS flux at normal incidence (theta(inc) = 0 degrees) is surprisingly well-modeled by a simple cos(n)(theta(scat)) distribution with n = 1.0 +/- 0.2, while glancing incident angles (theta(inc) = 30 degrees, 45 degrees, and 60 degrees) result in lobular angular IS distributions scattered preferentially in the forward direction. This trend is also corroborated in the TD fraction alpha, which decreases rapidly under non-normal incident conditions as a function of backward versus forward scattering direction. Furthermore, the extent of rotational excitation in the IS channel increases dramatically with increasing angle of incidence, consistent with an increasing rotational torque due to surface roughness at the gas-liquid interface.  相似文献   

7.
Variable incident angles in TXRF instrumentation open up new possibilities in the field of analytical quality assurance of TXRF measurements as well as the possibility of optimizing the measurement angle with respect to the sample carrier. Measurements on the same sample with different incident angles allow a check to be made on the behavior of the internal standard and the elements under investigation within the sample, which makes quantification more reliable, even for difficult samples. This is demonstrated on the example of standard reference material NIST 1633a comparing the relative fluorescence intensities of the elements K, Ti and Fe obtained from a sample prepared from a suspension and a digestion of the SRM material, respectively. Furthermore, it will be shown how the measurement conditions for different sample carrier materials such as quartz and acrylic glass can be optimized by measuring angular-dependent signal and background intensities.  相似文献   

8.
In this paper, we report the first observation of metal-enhanced S(2) emission at room and low temperature (77K). The S(2) emission intensity of Azulene is enhanced by close proximity to Silver island films (SiFs). In this regard, a ≈ 2-fold higher S(2) fluorescence intensity of Azulene was observed from SiFs as compared to a glass control sample. This suggests that S(2) excited states can couple to surface plasmons and enhance S(2) fluorescence yields, a helpful observation in our understanding the interactions between plasmons and lumophores, and our continued efforts to develop a unified plasmon-lumophore/fluorophore theory.  相似文献   

9.
The ciliate Stentor coeruleus exhibits photodispersal, that is, these cells swim away from light sources and collect in dimly lighted areas. We imaged and reconstructed the tracks of 48 Stentor to determine which swimming behaviors produced their photodispersal. We observed that their photodispersal is not due to a change in their swimming speed but rather to a change in the frequency with which they reorient their swimming direction. Therefore, their photodispersal must be due to either (1) a gradual reorientation of the organism's swimming direction determined by the direction of the light beam (phototaxis) or (2) multiple randomly directed reorientations in swimming direction that occur less frequently when the cell is swimming away from the light source (biased random walk). Sixteen (19%) of the 83 observed forward swimming tracks lasting three or more seconds exhibited a gradual bending away from the light source consistent with a phototaxis. However, most tracks were interrupted repeatedly by abrupt reorientations resulting from ciliary reversals and "smooth turns" that caused cells to reorient through 5.4 times as many degrees as were needed to direct them away from the light source. When cells were swimming away from the light source, their probability of reorienting was reduced and photodispersal resulted.  相似文献   

10.
Molecular beam techniques are used to grow water films on Pt(111) with various incident angles and collision energies from 5 to 205 kJ/mol. The effect of the incident angle and collision energy on the porosity and surface area of the vapor-deposited water films was studied using nitrogen physisorption and infrared spectroscopy. At low incident energy (5 kJ/mol), the infrared spectra, which provide a direct measure of the surface area, show that the surface area increases with incident angle and levels off at angles > 65 degrees . This is in contrast to the nitrogen uptake data, which display a maximum near 65 degrees because of the decrease in nitrogen condensation in the larger pores that develop at high incident angles. Both techniques show that the morphology of vapor-deposited water films depends strongly on the incident kinetic energy. These observations are consistent with a ballistic deposition shadowing model used to describe the growth of highly porous materials at glancing angle. The dependence of film morphology on incident energy may have important implications for the growth of porous materials via glancing angle deposition and for the structure of interstellar ices.  相似文献   

11.
We report experimental results for electron scattering from tetrafluoroethylene, C2F4, obtained from measurements in two laboratories. An extensive set of differential, integral, and momentum transfer cross sections is provided for elastic scattering for incident electron energies from 1 to 100 eV and inelastic (vibrational excitation) scattering for incident electron energies at 3, 6, 7.5, 8, and 15 eV, and for scattering angles ranging from 10 degrees to 130 degrees. To highlight the role of intermediate negative ions (resonances) in the scattering process we have also measured excitation functions for elastic scattering and vibrational excitation of the ground electronic state of C2F4 for incident energies between 1.5 and 20 eV. Our results are compared with recent theoretical calculations and a limited number of other experimental results.  相似文献   

12.
Horizontally non-uniform electric field along the vertical direction inside blue-phase liquid crystal (BPLC) layer induces the Gradient index (GRIN) lens effect. Dependence of lens performance on the incident angle and polarisation is investigated by calculating the spatial phase distribution and the direction of wave front for lights passing through the BPLC layer. The calculated trajectories of light rays show that the focal distance for e-wave is less affected by the incidence angle than the focal distance of the o-wave. This can be attributed to the fact that steepness of spatial distribution of the effective refractive index for e-wave decreases for the larger incident angles.  相似文献   

13.
The marine ciliate Fabrea salina shows a clear positive phototaxis, but the mechanism by which a single cell is able to detect the direction of light and orient its swimming accordingly is still unknown. A simple model of phototaxis is that of a biased random walk, where the bias due to light can affect one or more of the parameters that characterize a random walk, i.e., the mean speed, the frequency distribution of the angles of directional changes and the frequency of directional changes. Since experimental evidence has shown no effect of light on the mean speed of Fabrea salina, we have excluded models depending on this parameter. We have, therefore, investigated the phototactic orientation of Fabrea salina by computer simulation of two simple models, the first where light affects the frequency distribution of the angles of directional changes (model M1) and the second where the light bias modifies the frequency of directional changes (model M2). Simulated M1 cells directly orient their swimming towards the direction of light, regardless of their current swimming orientation; simulated M2 cells, on the contrary, are unable to actively orient their motion, but remain locked along the light direction once they find it by chance. The simulations show that these two orientation models lead to different macroscopic behaviours of the simulated cell populations. By comparing the results of the simulations with the experimental ones, we have found that the phototactic behaviour of real cells is more similar to that of the M2 model.  相似文献   

14.
HyungKi Hong 《Liquid crystals》2013,40(9):1055-1061
The electric-field-driven liquid crystal lens (ELC) induces the lens effect by the spatially non-uniform distribution of the refractive index. A scheme to analyse the performance of the ELC lens for the lights of various incident angles is devised by the calculation of the phase through the ELC lens and the determination of light ray directions from these phases. The calculated results show that the ELC lens changes the incident light of the plane wave into a focused wave and the focal distance becomes shorter for larger incident angles.  相似文献   

15.
This article presents the design, construction and characterization of a novel type of light probe for measuring the angular radiance distribution of light fields. The differential acceptance angle (DAA) probe can resolve the directionality of a light field in environments with steep light gradients, such as microbial mats, without the need to remove, reorient, and reinsert the probe, a clear advantage over prior techniques. The probe consists of an inner irradiance sensor inside a concentric, moveable light‐absorbing sheath. The radiative intensity in a specific zenith direction can be calculated by comparing the irradiance onto the sensor at different acceptance angles. We used this probe to measure the angular radiance distribution of two sample light fields, and observed good agreement with a conventional radiance probe. The DAA probe will aid researchers in understanding light transfer physics in dense microbial communities and expedite validation of numerical radiative transfer models for these environments.  相似文献   

16.
We studied surface plasmon-coupled emission (SPCE) of semiconductor quantum dots (QDs). These QDs are water-soluble ZnS-capped CdSe nanoparticles stabilized using lysine cross-linked mercaptoundecanoic acid. The QDs were spin-coated from 0.75% PVA solution on a glass slide covered with 50 nm of silver and a 5-nm protective SiO(2) layer. Excited QDs induced surface plasmons in a thin silver layer. Surface plasmons emitted a hollow cone of radiation into an attached hemispherical glass prism at a narrow angle of 48.5 degrees. This directional radiation (SPCE) preserves the spectral properties of QD emission and is highly p-polarized irrespective of the excitation polarization. The SPCE spectrum depends on the observation angle because of the intrinsic dispersive properties of SPCE phenomenon. The remarkable photostability can make QDs superior to organic fluorophores when long exposure to the intense excitation is needed. The nanosize QDs also introduce a roughness near the metal layer, which results in a many-fold increase of the coupling of the incident light to the surface plasmons. This scattered incident illumination transformed into directional, polarized radiation can be used simultaneously with SPCE to develop devices based on both quantum dot emission and light scattered from surface plasmons on a rough surface.  相似文献   

17.
Vibrational electron energy loss spectra were measured for propane at incident energies of 3, 6, 10, 15, 20, and 25 eV at scattering angles of 40 degrees, 55 degrees, 70 degrees, 85 degrees, and 100 degrees . The spectra are compared with the results of ab initio calculations using a recently developed two-channel discrete momentum representation method. Good agreement between theory and experiment was found for large scattering angles and energies above the resonant region.  相似文献   

18.
We report our detailed metal-enhanced phosphorescence (MEP) findings using Rose Bengal at low temperature. Silver Island Films (SiFs) in close proximity to Rose Bengal significantly enhance the phosphorescence emission intensity. In this regard, a 5-fold brighter phosphorescence intensity of Rose Bengal was observed from SiFs as compared to a glass control sample at 77 K. In addition, several factors affecting MEP, such as distance dependence and silver film morphology, were also investigated. Our findings suggest that both singlet and triplet states can couple to surface plasmons and enhance both fluorescence and phosphorescence yields. This finding suggests that MEP can be used to promote triplet-based assays, such as those used in photodynamic therapy.  相似文献   

19.
《Liquid crystals》1999,26(7):959-964
We have investigated the generation of pretilt angle for a nematic liquid crystal (NLC) alignment in cells with oblique non-polarized ultraviolet (UV) light irradiation on polyimide (PI) surfaces. It was found that monodomain alignment of the NLC is obtained with an incident angle of 70 degrees and 75 degrees on the PI surface. It is considered that this alignment may be attributed to the anisotropic dispersion force due to photo-depolymerization of polymer on PI surfaces. Also, the generated NLC pretilt angles are all about 3 degrees at an incident angle of 70 degrees and 75 degrees for 1 h irradiation. Next, we observed that the voltage-transmittance characteristics for a photo-aligned twisted nematic (TN) LCD with an incident angle of 80 degrees on a PI surface were excellent. Also, we measured that the voltage-holding-ratio (VHR) of a photo-aligned TN-LCD is about 94%; it is almost same as obtained for rubbing-aligned TN-LCDs. Finally, the slow response time of photo-aligned TN-LCDs is attributable to their weak anchoring strength.  相似文献   

20.
We investigated the effect of the polarisation direction and incident angle of a UV light on the electrooptical properties of the polymer-stabilised vertically aligned in-plane switching (PS-VAIPS) liquid crystal. The PS-VAIPS sample cured with a UV light whose polarisation was parallel to the projected direction of the in-plane electric field showed greater transmittance, faster rising time and slower falling time than the sample cured with a UV light with a perpendicular polarisation to the electric field. In addition, the PS-VAIPS sample showed slower rising time and faster falling time with increasing incident angle of the UV light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号