首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Calculations of the flow of the mixture 0.94 CO2+0.05 N2+0.01 Ar past the forward portion of segmentai bodies are presented. The temperature, pressure, and concentration distributions are given as a function of the pressure ahead of the shock wave and the body velocity. Analysis of the concentration distribution makes it possible to formulate a simplified model for the chemical reaction kinetics in the shock layer that reflects the primary flow characteristics. The density distributions are used to verify the validity of the binary similarity law throughout the shock layer region calculated.The flow of a CO2+N2+Ar gas mixture of varying composition past a spherical nose was examined in [1]. The basic flow properties in the shock layer were studied, particularly flow dependence on the free-stream CO2 and N2 concentration.New revised data on the properties of the Venusian atmosphere have appeared in the literature [2, 3] One is the dominant CO2 concentration. This finding permits more rigorous formulation of the problem of blunt body motion in the Venus atmosphere, and attention can be concentrated on revising the CO2 thermodynamic and kinetic properties that must be used in the calculation.The problem of supersonic nonequilibrium flow past a blunt body is solved within the framework of the problem formulation of [4].Notation V body velocity - shock wave standoff - universal gas constant - ratio of frozen specific heats - hRt/m enthalpy per unit mass undisturbed stream P pressure - density - T temperature - m molecular weight - cp specific heat at constant pressure - (X) concentration of component X (number of particles in unit mass) - R body radius of curvature at the stagnation point - j rate of j-th chemical reaction shock layer P V 2 pressure - density - TT temperature - mm molecular weight Translated from Izv. AN SSSR. Mekhanika Zhidkosti i Gaza, Vol. 5, No. 2, pp. 67–72, March–April, 1970.The author thanks V. P. Stulov for guidance in this study.  相似文献   

2.
In the hypersonic thin shock layer approximation for a small ratio k of the densities before and after the normal shock wave the solution of [1] for the vicinity of the stagnation point of a smooth blunt body is extended to the case of nonuniform outer flow. It is shown that the effect of this nonuniformity can be taken into account with the aid of the effective shock wave radius of curvature R*, whose introduction makes it possible to reduce to universal relations the data for different nonuniform outer flows with practically the same similarity criterion k. The results of the study are compared with numerical calculations of highly underexpanded jet flow past a sphere.Notations x, y a curvilinear coordinate system with axes directed respectively along and normal to the body surface with origin at the forward stagnation point - R radius of curvature of the meridional plane of the body surface - uV, vV., , p V 2 respectively the velocity projections on the x, y axes, density, and pressure - and V freestream density and velocity The indices =0 and=1 apply to plane and axisymmetric flows Izv. AN SSSR, Mekhanika Zhidkosti i Gaza, Vol. 5, No. 3, pp. 102–105, 1970.  相似文献   

3.
An isotropic, incompressible linear viscoelastic solid subjected to a step shear displacement fails if the relaxation function G(s) is such that 0<G(0)< and –<G(0)0. In this case, the discontinuity in displacement propagates into the interior of the body. The discontinuity will not propagate however if G(0)= or G(0)=–. In the former case there is a diffusion-like smoothening of discontinuous data characteristic of parabolic equations. The case G(0)= may be achieved by composing the kernel as a sum of a smooth kernel and a delta function at the origin times a viscosity coefficient. If the viscosity is small, the smoothing will take place in a propagating layer which scales with the small viscosity. The case of G(0)=– is interesting in the sense that the solution is C smooth but the boundary of the support of the solution propagates at a constant wave spped. If 0<G(0)< and –<G(0)<0, then the material accomodates stress waves under step traction leading to an elastic steady state.  相似文献   

4.
The equilibrium states of homogeneous turbulence simultaneously subjected to a mean velocity gradient and a rotation are examined by using asymptotic analysis. The present work is concerned with the asymptotic behavior of quantities such as the turbulent kinetic energy and its dissipation rate associated with the fixed point (/kS)=0, whereS is the shear rate. The classical form of the model transport equation for (Hanjalic and Launder, 1972) is used. The present analysis shows that, asymptotically, the turbulent kinetic energy (a) undergoes a power-law decay with time for (P/)<1, (b) is independent of time for (P/)=1, (c) undergoes a power-law growth with time for 1<(P/)<(C 2–1), and (d) is represented by an exponential law versus time for (P/)=(C 2–1)/(C 1–1) and (/kS)>0 whereP is the production rate. For the commonly used second-order models the equilibrium solutions forP/,II, andIII (whereII andIII are respectively the second and third invariants of the anisotropy tensor) depend on the rotation number when (P/kS)=(/kS)=0. The variation of (P/kS) andII versusR given by the second-order model of Yakhot and Orzag are compared with results of Rapid Distortion Theory corrected for decay (Townsend, 1970).  相似文献   

5.
The results of investigations of inviscid flow over inverted cones with nose consisting of a spherical segment were published for the first time in Soviet literature in [1–4]. In the present paper, a numerical solution to this problem is obtained using the improved algorithms of [5, 6], which have proved themselves well in problems of exterior flow over surfaces with positive angles of inclination to the oncoming flow. It is shown that the Mach number 2 M , equilibrium and nonequilibrium physicochemical transformations in air (H = 60 km, V = 7.4 km/sec, R0 = 1 m), and the angle of attack 0 40° influence the investigated pressure distributions. A comparison of the results of the calculations with drainage experiments for M = 6, = 0-25° confirms the extended region of applicability of the developed numerical methods. Also proposed is a simple correlation of the dependence on the Mach number in the range 1.5 M of the shape of the shock wave near a sphere in a stream of ideal gas with adiabatic exponent = 1.4.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 178–183, January–February, 1981.  相似文献   

6.
Existence theorem for a minimum problem with free discontinuity set   总被引:6,自引:0,他引:6  
We study the variational problem Where is an open set in n ,n2gL q () L (), 1q<+, O<, <+ andH n–1 is the (n–1)-dimensional Hausdorff Measure.  相似文献   

7.
Various aspects of the problem of intense blowing through the surface of bodies have, been theoretically studied by a number of authors, within the framework of inviscid flow theory. A detailed bibliography on this topic is given, e.g., in [1, 2]. The well-known approaches to solution of this problem have a limited area of application. For example, asymptotic methods can be used for hypersonic flow regimes only at relatively low levels of the blown gas momentum ( = 2 = ovo 2/ V 2 1). The same limitation applies to the numerical method of straight lines [2]. The forward Eulerian calculation schemes [3, 4] smear the contact discontinuity severely, and cannot handle the case where the blown gas and the gas in the incident flow have different thermodynamic properties (o ). This paper presents results of a numerical investigation of supersonic flow over two-dimensional and axisymmetric bodies with intense blowing on the forward surface, performed using a time-dependent finite-difference method [5] with an explicit definition of the contact interface between the two cases. The calculations encompass a family of elliptic cylinders with semiaxis ratio 0.5 4, a flat-face cylinder, and a flat plate with rounding near the midsection, with variations in the blowing law, the incident flow Mach number M (3 M 10), the adiabatic indices, and the blowing parameter 0 0.5.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 117–124, January–February, 1977.In conclusion, the authors thank T. S. Novikov and I. D. Sandomirskii, who took part In the present calculations.  相似文献   

8.
Hyperbolic phenomena in a strongly degenerate parabolic equation   总被引:2,自引:0,他引:2  
We consider the equation u t =((u) (u x )) x , where >0 and where is a strictly increasing function with lim s = <. We solve the associated Cauchy problem for an increasing initial function, and discuss to what extent the solution behaves qualitatively like solutions of the first-order conservation law u t = ((u)) x . Equations of this type arise, for example, in the theory of phase transitions where the corresponding free-energy functional has a linear growth rate with respect to the gradient.  相似文献   

9.
This paper studies Lp-estimates for solutions of the nonlinear, spatially homogeneous Boltzmann equation. The molecular forces considered include inverse kth-power forces with k > 5 and angular cut-off.The main conclusions are the following. Let f be the unique solution of the Boltzmann equation with f(v,t)(1 + ¦v2¦)(s 1 + /p)/2 L1, when the initial value f 0 satisfies f 0(v) 0, f 0(v) (1 + ¦v¦2)(s 1 + /p)/2 L1, for some s1 2 + /p, and f 0(v) (1 + ¦v¦2)s/2 Lp. If s 2/p and 1 < p < , then f(v, t)(1 + ¦v¦2)(s s 1)/2 Lp, t > 0. If s >2 and 3/(1+ ) < p < , thenf(v,t) (1 + ¦v¦2)(s(s 1 + 3/p))/2 Lp, t > 0. If s >2 + 2C0/C1 and 3/(l + ) < p < , then f(v,t)(1 + ¦v¦2)s/2 Lp, t > 0. Here 1/p + 1/p = 1, x y = min (x, y), and C0, C1, 0 < 1, are positive constants related to the molecular forces under consideration; = (k – 5)/ (k – 1) for kth-power forces.Some weaker conclusions follow when 1 < p 3/ (1 + ).In the proofs some previously known L-estimates are extended. The results for Lp, 1 < p < , are based on these L-estimates coupled with nonlinear interpolation.  相似文献   

10.
Summary The behavior of a spherical bubble near a solid wall is analysed by considering the liquid compressibility. The equation of motion of the bubble with first order correction for the effects of liquid compressibility and solid wall is derived. The equation obtained here coincides with the known result in case of L or C . Further experimental study is made on the motion of bubbles produced by a spark discharge in water. The theoretical results are in good agreement with the experiments.
Das Verhalten einer kugelförmigen Blase in einer kompressiblen Flüssigkeit in der Nähe einer festen Wand
Übersicht Bei Berücksichtigung der Flüssigkeitskompressibilität wird das Verhalten einer kugelförmigen Blase in der Nähe einer festen Wand analysiert. Die Gleichung der Bewegung der Blase wird mit der Korrektur erster Ordnung für den Einfluß der Flüssigkeitskompressibilität und der festen Wand angegeben. Aus der erhaltenen Gleichung wird für L oder C das bekannte Ergebnis hergeleitet. Darüber hinaus wird eine experimentelle Untersuchung der Blasenbewegung durchgeführt. Die Blase wird mit Hilfe von Funkendurchschlägen zwischen Elektroden in Wasser erzeugt. Die theoretischen Ergebnisse stimmen gut mit den Experimenten überein.
  相似文献   

11.
A numerical solution is obtained for the problem of air flow past a sphere under conditions when nonequilibrium excitation of the vibrational degrees of freedom of the molecular components takes place in the shock layer. The problem is solved using the method of [1]. In calculating the relaxation rates account was taken of two processes: 1) transition of the molecular translational energy into vibrational energy during collision; 2) exchange of vibrational energy between the air components. Expressions for the relaxation rates were computed in [2]. The solution indicates that in the state far from equilibrium a relaxation layer is formed near the sphere surface. A comparison is made of the calculated values of the shock standoff with the experimental data of [3].Notation uVmax, vVmax velocity components normal and tangential to the sphere surface - Vmax maximal velocity - P V max 2 pressure - density - TT temperature - eviRT vibrational energy of the i-th component per mole (i=–O2, N2) - =rb–1 shock wave shape - a f the frozen speed of sound - HRT/m gas total enthalpy  相似文献   

12.
Dynamic shear measurements in the frequency range from 10–4 to 500 rad/s at the flow and main transition of a polydisperse poly(vinyl acetate) and a monodisperse polystyrene sample are presented. For both samples the Vogel temperature of the flow transition T FT is smaller than the Vogel temperature of the main transition T , independent of the criteria used for data evaluation. The difference between the two Vogel temperatures corresponds to results for samples with other molecular weight and polydispersity from the literature. The T FT <T relation is discussed in terms of short () and long (FT) dynamic glass transitions in entangled polymers. The relation is explained by preaveraging of the energy landscape for the long flow transition by the short glass transition.  相似文献   

13.
The inviscid transonic flow past a symmetric airfoil having a curvature minimum in the middle is numerically investigated. It is shown that at zero angle of attack both symmetric and asymmetric steady-state flow patterns can exist on a certain freestream Mach number range Mmin < Mmax. On this range, the asymmetric flows are stable against small perturbations, whereas the symmetric flows are stable only if M does not coincide with a singular Mach number at which small variations in M or can result in flow restructuring.  相似文献   

14.
An asymptotic analysis of the Navier-Stokes equations is carried out for the case of hypersonic flow past wings of infinite span with a blunt leading edge when 0, Re , and M . Analytic solutions are obtained for an inviscid shock layer and inviscid boundary layer. The results of a numerical solution of the problems of vorticity interaction at the blunt edge and on the lateral surface of the wing are presented. These solutions are compared with the solution of the equations of a thin viscous shock layer and on the basis of this comparison the boundaries of the asymptotic regions are estimated.deceasedTranslated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 120–127, November–December, 1987.  相似文献   

15.
Summary A new and very general expression is proposed for correlation of data for the effective viscosity of pseudoplastic and dilatant fluids as a function of the shear stress. Most of the models which have been proposed previously are shown to be special cases of this expression. A straightforward procedure is outlined for evaluation of the arbitrary constants.
Zusammenfassung Eine neue und sehr allgemeine Formel wird für die Korrelation der Werte der effektiven Viskosität von strukturviskosen und dilatanten Flüssigkeiten in Abhängigkeit von der Schubspannung vorgeschlagen. Die meisten schon früher vorgeschlagenen Methoden werden hier als Spezialfälle dieser Gleichung gezeigt. Ein einfaches Verfahren für die Auswertung der willkürlichen Konstanten wird beschrieben.

Nomenclature b arbitrary constant inSisko model (eq. [5]) - n arbitrary exponent in eq. [1] - x independent variable - y(x) dependent variable - y 0(x) limiting behavior of dependent variable asx 0 - y(x) limiting behavior of dependent variable asx - z original dependent variable - arbitrary constant inSisko model (eq. [5]) andBird-Sisko model (eq. [6]) - arbitrary exponent in eqs. [2] and [8] - effective viscosity = shear stress/rate of shear - A effective viscosity at = A - B empirical constant in eqs. [2] and [8] - 0 limiting value of effective viscosity as 0 - 0() limiting behavior of effective viscosity as 0 - limiting value of effective viscosity as - () limiting behavior of effective viscosity as - rate of shear - arbitrary constant inBird-Sisko model (eq.[6]) - shear stress - A arbitrary constant in eqs. [2] and [8] - 0 shear stress at inBingham model - 1/2 shear stress at = ( 0 + )/2 With 8 figures  相似文献   

16.
The construction suggested by an inverse-scattering analysis establishes the existence of solutions u(x, t) of the Korteweg-de Vries equation subject to an initial condition u(x, 0)=U(x), where U has certain regularity and decay properties. It is assumed that UC3(), that U is piecewise of class C 4, and that U (j) decays at an algebraic rate for j4. The faster the decay of U (j) the smoother the solution will be for t0. If U and its first four derivatives decay faster than ¦x¦–n for all n, then the solution will be infinitely differentiable for t0. For t>0, the decay rate of u(x, t) as x + increases with the decay rate of U; but the decay rate as x - depends on the regularity of U. A solution u 1 of the Korteweg-de Vries equation such that u 1(·, 0)C() may fail to remain in class C for all time if u 1(x, 0) does not decay fast enough as ¦x¦.This research was performed in part as a Visiting Member of the Courant Institute of Mathematical Science.  相似文献   

17.
The article gives the results of an experimental investigation of the geometric structure of an opposing unexpanded jet. It discusses flow conditions with interaction between the jet and sub- and supersonic flows. It is shown that, with the outflow of an unexpanded jet counter to a supersonic flow, there are unstable flow conditions. For stable flow conditions with one roll, dependences are proposed determining the form of a jet in a supersonic opposing flow. A generalized dependence is obtained for the distribution of the pressure at the surface of a body with a jet, flowing out counter to a subsonic flow. The range of change in the determining parameters are the following: Mach numbers at outlet cross section of nozzle, M a = 1 and 3; Mach numbers of opposing flow, M = 0.6–0.9 and 2.9; degree of effectiveness of jet, n = p a /p = 0.5–800 (p a and p are the static pressures at the outlet cross section of the nozzle and in the opposing flow); the ratios of the specific heat capacities, a = = 1.4; the drag temperatures of the jet and the flow, To = Toa = 290°K.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 89–96, January–February, 1977.  相似文献   

18.
Summary TheCross equation describes the flow of pseudoplastic liquids in terms of an upper and a lower Newtonian viscosity corresponding to infinite and zero shear, and 0, and of a third material constant related to the mechanism of rupture of linkages between particles in the intermediate, non-Newtonian flow regime, Calculation of of bulk polymers is important, since it cannot be determined experimentally. The equation was applied to the melt flow data of two low density polyethylenes at three temperatures.Using data in the non-Newtonian region covering 3 decades of shear rate to extrapolate to the zero-shear viscosity resulted in errors amounting to about onethird of the measured 0 values. The extrapolated upper Newtonian viscosity was found to be independent of temperature within the precision of the data, indicating that it has a small activation energy.The 0 values were from 100 to 1,400 times larger than the values at the corresponding temperatures.The values of were large compared to the values found for colloidal dispersions and polymer solutions, but decreased with increasing temperature. This shows that shear is the main factor in reducing chain entanglements, but that the contribution of Brownian motion becomes greater at higher temperatures.
Zusammenfassung Die Gleichung vonCross beschreibt das Fließverhalten von pseudoplastischen Flüssigkeiten durch drei Konstante: Die obereNewtonsche Viskosität (bei sehr hohen Schergeschwindigkeiten), die untereNewtonsche Viskosität 0 (bei Scherspannung Null), und eine Materialkonstante, die vom Brechen der Bindungen zwischen Partikeln im nicht-Newtonschen Fließbereich abhängt. Die Berechnung von ist wichtig für unverdünnte Polymere, wo man sie nicht messen kann.Die Gleichung wurde auf das Fließverhalten der Schmelzen von zwei handelsüblichen Hochdruckpolyäthylenen bei drei Temperaturen angewandt. Die Werte von 0, durch Extrapolation von gemessenen scheinbaren Viskositäten im Schergeschwindigkeitsbereich von 10 bis 4000 sec–1 errechnet, wichen bis 30% von den gemessenen 0-Werten ab. Die Aktivierungsenergie der war so klein, daß die-Werte bei den drei Temperaturen innerhalb der Genauigkeit der Extrapolation anscheinend gleich waren. Die 0-Werte waren 100 bis 1400 mal größer als die-Werte.Im Verhältnis zu kolloidalen Dispersionen und verdünnten Polymerlösungen war das der Schmelzen groß, nahm aber mit steigender Temperatur ab. Deshalb wird die Verhakung der Molekülketten hauptsächlich durch Scherbeanspruchung vermindert, aber der Beitrag derBrownschen Bewegung nimmt mit steigender Temperatur zu.
  相似文献   

19.
We consider linearized dynamics associated with step jumps in the velocity or displacement of the boundary of a fluid in a shearing motion. The discontinuity will propagate into the interior with a speed ( is the density) if the initial valuesG(0) andG(0) of the fading memory kernels are bounded, 0 <G(0) < , – <G (0) < 0. IfG(0) butG(0) = – , then the boundary of the support of the solution still propagates with the speedC. However, the solutions on both sides of the boundary match together in aC -fashion. IfG(0) butG(0) = 0, the amplitude of the discontinuity will not damp as in a purely elastic fluid. IfG(0) = , the step change is felt immediately throughout the fluid, without shocks, as in Navier-Stokes fluids. This same type of parabolic behavior can be achieved by a small Newtonian contribution added to the integral form of the stress but if this contribution is small, a smooth transition layer around the shock will propagate with the speedC. In the case of step displacement, from rest to rest, singular surfaces of infinite velocity can propagate into the interior with speed of propagationC. The singular surfaces undergo multiple reflections off bounding walls, but the final steady state reached asymptotically is in universal form independent of material.  相似文献   

20.
Linear stability theory is used to investigate the onset of longitudinal vortices in laminar boundary layers along horizontal semi-infinite flat plates heated or cooled isothermally from below by considering the density inversion effect for water using a cubic temperature-density relationship. The analysis employs non-parallel flow model incorporating the variation of the basic flow and temperature fields with the streamwise coordinate as well as the transverse velocity component in the disturbance equations. Numerical results for the critical Grashof number Gr L * =Gr X * /Re X< Emphasis>/3/2 are presented for thermal conditions corresponding to –0.5 1–2.0 and –0.8 21.2.Nomenclature a wavenumber, 2/ - D operator, d/d - F (f–f)/2 - f dimensionless stream function - g gravitational acceleration - G eigenvalue, Gr L/ReL - Gr L Grashof number based on L - Gr X Grashof number based on X - L characteristic length, (X/U)1/2 - M number of divisions in y direction - P pressure - Pr Prandtl number, / - p dimensionless pressure, P/( 2 /Re L) - Re L, ReX Reynolds numbers, (U L/)=Re X< 1/2 and (U), respectively - T temperature - U, V, W velocity components in X, Y, Z directions - u, v, w dimensionless perturbation velocities, (U, V, W)/U - X, Y, Z rectangular coordinates - x, y, z dimensionless coordinates, (X, Y, Z)/L - thermal diffusivity - coefficient of thermal expansion - 1, 2 temperature coefficients for density-temperature relationship - similarity variable, Y/L=y - dimensionless temperature disturbance, /T - dimensionless wavelength of vortex rolls, 2/a - 1, 2 thermal parameters defined by equation (12) - kinematic viscosity - density - dimensionless basic temperature, (T b T )/T - –1 - T temperature difference, (T wT ) - * critical value or dimensionless disturbance amplitude - prime, disturbance quantity or differentiation with respect to - b basic flow quantity - max value at a density maximum - w value at wall - free stream condition  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号