首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Corning archeological reference glasses A, B, C, and D have been made to simulate different historic technologies of glass production and are used as standards in historic glass investigations. In this work, nanoseconds (193, 266 nm) and femtosecond (800 nm) laser ablation were used to study the elemental composition of Corning glasses using laser ablation inductively coupled plasma mass spectrometry. The determined concentrations of 26 oxides (Li2O, B2O3, Na2O, MgO, Al2O3, SiO2, P2O5, K2O, CaO, TiO2, V2O5, Cr2O3, MnO, Fe2O3, CoO, NiO, CuO, ZnO, Rb2O, SrO, ZrO2, SnO2, Sb2O5, BaO, PbO, Bi2O3) are compared with values reported in the literature. Results show variable discrepancies between the data, with the largest differences found for Cr2O3 in Corning A; Li2O, B2O3, and Cr2O3 in Corning B; and MnO, Sb2O5, Cr2O3, and Bi2O3 in Corning C. The best agreement between the measured and literature values was found for Corning D. However, even for this reference, glass re-evaluation of the data was necessary and new values for PbO, BaO, and Bi2O3 are proposed.  相似文献   

2.
The glasses within composition as: (80 − x)V2O5/20Bi2O3/xBaTiO3 with x = 2.5, 5, 7.5 and 10 mol% have been prepared. The glass transition (Tg) increases with increasing BaTiO3 content. Synthesized glasses ceramic containing BaTi4O9, Ba3TiV4O15 nanoparticles of the order of 25–35 nm and 30–46 nm, respectively were estimated using XRD. The dielectric properties over wide ranges of frequencies and temperatures were investigated as a function of BaTiO3 content by impedance spectroscopy measurements. The hopping frequency, ωh, dielectric constant, ε′, activation energies for the DC conduction, Eσ, the relaxation process, Ec, and stretched exponential parameter β of the glasses samples have been estimated. The, ωh, β, decrease from 51.63 to 0.31 × 106 (s−1), 0.84 to 0.79 with increasing BaTiO3 respectively. Otherwise, the Eσ, increase from 0.279 to 0.306 eV with increasing BaTiO3. The value of dielectric constant equal 9.5·103 for the 2.5BaTiO3/77.5V2O5/20Bi2O3 glasses-ceramic at 330 K for 1 KHz which is ten times larger than that of same glasses composition. Finally the relaxation properties of the investigated glasses are presented in the electric modulus formalism, where the relaxation time and the respective activation energy were determined.  相似文献   

3.
Infrared spectra of xBaO·(30-x)PbO·70B2O3, xBaO·(40-x)PbO·60B2O3 and xBaO·(50-x)PbO·50B2O3 glasses have been quantitatively analyzed. The fraction of four coordinated boron atoms varies linearly, for each group, between the values of the corresponding binary borate glasses. The data could be used to calculate and follow the composition dependence of the concentration of structural units in all glasses. The results show a linear increase in the ratio of PbO forming BO4 units to the total content of PbO, with increasing B2O3 in binary PbO–B2O3 glasses. Similar behavior has been observed for the ratio of BaO forming BO4 units to the total content of BaO in binary BaO–B2O3 glasses. The ratio of PbO forming PbO4 units to the total PbO content, and that of BaO forming asymmetric BO3 units to the total BaO content, shows a reversed dependence. The linear change in fraction of four coordinated boron atoms and in density and molar volume suggests that the studied glasses can be treated as mixtures of binary PbO–B2O3 and BaO–B2O3 matrices.  相似文献   

4.
The thermal evolution of gels, glasses and ceramics of various more or less refractory compositions (Al2O3, 3Al2O32SiO2, 7Al2O33SiO2, Al2O32SiO2, Al2O32SiO20.7B2O3, Al2O32SiO22B2O3, Al2O32SiO26B2 O3) have been studied by dilatometry, DTA, and helium density measurements. Comparison is made for materials prepared by rapid (powder) or by very slow gelation (optically clear monoliths). The influence of atmosphere sintering (air, H2, vacuum) is reported. Densification and kinetic laws are discussed.Also at LASIR, CNRS, 2 rue Henry Dunant, 94320 Thiais, France.  相似文献   

5.
Glasses with compositions 60B2O3–40PbO, 60B2O3–40Bi2O3, and 60B2O3–30Bi2O3–10PbO have been prepared and studied by differential thermal analysis. The crystallization kinetics of the glasses was investigated under non-isothermal conditions. From dependence of the glass transition temperature (T g) on the heating rate, the activation energy for the glass transition was derived. Similarly the activation energy of the crystallization process was determined. Thermal stability of these glasses were achieved in terms of the characteristic temperatures, such as the glass transition temperature, T g, the onset temperature of crystallization, T in , the temperature corresponding to the maximum crystallization rate, T p, beside the kinetic parameters, K(T g) and K(T p). The results revealed that the 60B2O3–40PbO is more stable than the others. The crystallization mechanism is characterized for glasses. The phases at which the glass crystallizes after the thermal process have been identified by X-ray diffraction.  相似文献   

6.
A linear relationship exists between the glass transition temperature (T g) and the quadrupole splitting (Δ) of Fe(III). The linear relationship, termed ‘T g-Δ rule’, has been verified in 60CaO·(40-x)Al2O3·xFe2O3, 60CaO·10BaO·(30-x) Al2O3·xFe2O3, 60CaO·(40-x)Ga2O3·xFe2O3, and 50CaO·(50-x)Ga2O3·xFe2O3 glasses. In these glasses, both theT g and Δ decrease linearly with an increasing content of Fe2O3 (≈40 mol%). The slope of the straight line, obtained from the plot of theT g vs. Δ, was calculated to be 670≈700, °C/(mm·s−1), revealing that the Fe(III) constitutes the skeleton of aluminoferrate and galloferrate glasses.  相似文献   

7.
The glass transition temperature (Tg), density, refractive index, Raman scattering spectra, and X-ray photoelectron spectra (XPS) for xZnO-yBi2O3-zB2O3 glasses (x=10-65, y=10-50, z=25-60 mol%) are measured to clarify the bonding and structure features of the glasses with large amounts of ZnO. The average electronic polarizability of oxide ions (αO2−) and optical basicity (Λ) of the glasses estimated using Lorentz-Lorenz equation increase with increasing ZnO or Bi2O3 content, giving the values of αO2−=1.963 Å3 and Λ=0.819 for 60ZnO-10Bi2O3-30B2O3 glass. The formation of BOBi and BOZn bridging bonds in the glass structure is suggested from Raman and XPS spectra. The average single bond strength (BMO) proposed by Dimitrov and Komatsu is applied to the glasses and is calculated using single bond strengths of 150.6 kJ/mol for ZnO bonds in ZnO4 groups, 102.5 kJ/mol for BiO bonds in BiO6 groups, 498 kJ/mol for BO bonds in BO3 groups, and 373 kJ/mol for BO bonds in BO4 groups. Good correlations are observed between Tg and BMO, Λ and BMO, and Tg and Λ, proposing that the average single bond strength is a good parameter for understanding thermal and optical properties of ZnOBi2O3B2O3 glasses.  相似文献   

8.
A survey is given of applications of Raman spectroscopy in materials characterization. The following topics are covered: Analytical characterization of glasses in the system PbO-B2O3 and of glasses and ceramics in the system SrO-B2O3-Al2O3-TiO2; investigation and discussion of the so-called Boson peak in the Raman spectra of glasses; Raman spectra obtained with a microscope attachment of carbonaceous materials to study the orientation of graphite planes in films and fibres.  相似文献   

9.
DTA was used to study thermal properties and thermal stability of (50-x)Li2O-xTiO2-50P2O5 (x=0–10 mol%) and 45Li2Ot-yTiO2-(55-y)P2O5 (y=5–20 mol%) glasses. The addition of TiO2 to lithium phosphate glasses results in a non-linear increase of glass transition temperature. All prepared glasses crystallize under heating within the temperature range of 400–540°C. The lowest tendency towards crystallization have the glasses with x=7.5 and y=10 mol% TiO2. X-ray diffraction analysis showed that major compounds formed by annealing of the glasses were LiPO3, Li4 P2O7, TiP2O7 and NASICON-type LiTi2(PO4)3. DTA results also indicated that the maximum of nucleation rate for 45Li2O-5TiO2-50P2O5 glass is close to the glass transition temperature.  相似文献   

10.
Thermodynamic properties of sodium borosilicate glasses {56.7 SiO2, (43.7   x)B2O3,xNa2O} wherex =  14.4, 22.9, and 32.5, have been studied. The heat capacity was measured using an adiabatic calorimeter at temperatures between 13 K and 300 K. The thermodynamic functions were calculated from the smoothed values ofCp, m . The results differ from an additive model with pure glassy SiO2, B2O3, and crystalline Na2O as components. A model based on the assumption that the contribution of structural units of glasses to the heat capacity is equal to those of glasses with the same molecular formula is proposed.  相似文献   

11.
In this paper T g values of calcium (sodium) silicate glasses containing added with oxides of trivalent elements are reported. The plots of T g as a function of composition or vs. the ionic field strength prove to be useful in discussing the role of the oxides in the glass structure. It is found that, at least in the studied composition range, Sc2O3, Y2O3, La2O3, and In2O3, behave as network modifier oxides. In the compositional ranges studied, the hypothesis based on them well agree with the expectations based on the known criteria reported in literature and on FTIR spectra. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
A physicochemical study of glasses based on the MO-Bi2O3-B2O3 and SrO-Bi2O3-B2O3 systems was performed. Glass formation regions were found. The structural and optical properties, as well as the thermal behavior of the glasses, were studied.  相似文献   

13.
Alkali phosphomolybdate glasses have been prepared by quenching melted mixtures of P2O5, MoO3 and A2O(A=Li, Na). The composition dependence of the transition temperature of glasses belonging to ternary A2O–(MoO3)2–P2O5 (A=Li, Na) systems is studied for several series of glasses corresponding to either a fixed A2O rate or a constant Mo/P ratio. The interpretation of the results is based on the presence of different types of molybdenum and phosphorous structural groups and P–O–M (M=P, Mo) linkages in glasses. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Gels, densified amorphous materials and thin layers in SiO2-P2O5, SiO2-P2O5-Al2O3 and SiO2-P2O5-Na2O systems were obtained from alcohol solutions. Detailed DTA, XRD and FTIR investigations were carried out for dried gels and heat-treated samples. It has been found, among others, that the addition of aluminium to the silicate-phosphate glasses eliminates the doubly bonded oxygen (P=O) and leads to the formation of a continuous framework connected with [SiO4], [PO4] and [AlO4] tetrahedra.There were measured the chemical and electrical properties of glasses covered with silicatephosphate gel layers. It has been found that the chemical resistance of the covered glasses is higher than that of the basic, sodium-calcium-silicate glass. Moreover, the silicate-phosphate layers modify the surface electrical conduction of the basic glasses. The layers of systems SiO2-P2O5 and SiO2-P2O5-Al2O3 show the electrical conduction considerable higher than the basic glass. The layers containing sodium, depending on its concentration, behave similarly to the basic glass or show lower electrical conductivity.  相似文献   

15.
The effect of WO3 on thermal behaviour and thermal stability of ZnO–P2O5–WO3 glasses prepared in compositional series (100 ? x)[0.5ZnO–0.5P2O5] ? xWO3 (x = 0–60) was investigated by heating microscopy and the results were correlated with the results determined by conventional thermodilatometry and differential thermal analysis. Thermoanalytical studies showed that the glass transformation temperature and dilatation softening temperature increase with increasing WO3 content while thermal expansion coefficient decreases. The highest stability towards crystallization possess glasses containing 20–30 mol% WO3. Major compounds formed by the crystallization of the glasses were Zn(PO3)2, WO3 and W18P2O59. The values of sphere temperature, hemisphere temperature and flow temperature obtained using heating microscopy were strongly influenced by the degree of crystallization process at the sintering.  相似文献   

16.
A new variant of the sol–gel method for synthesising silica glasses and optical composites containing nanoparticles of chromium oxide has been designed. Monolithic gels are produced by mixing preformed silica modified with chromium oxide (Cr2O3/SiO2), with a sol–gel solution containing Si(OC2H5)4, and gelation catalyst ((CH2)6N4 or NH3). Highly dispersed Cr2O3/SiO2 samples were synthesised through a step-by-step controlled adsorption of vapours of CrO2Cl2 and C6H14 on the surface of fumed silica (A-300) and a subsequent thermal decomposition. With increasing chromium concentration in samples from 0.9 to 5.1 wt.%, the size of chromium oxide nanoparticles increases from 10 to 46 nm. XRD, DTA, TG, IR-spectroscopy and measurements of specific surface area have been used to investigate structural and physico-chemical properties of Cr2O3/SiO2 and xerogels during the course of their thermal transformations up to formation of glasses. A study has also been carried out of optical properties of transparent samples (distribution of refractive index values through cross section of a preform). The glasses synthesised with the aid of Cr2O3/SiO2 have a more uniform distribution of doping constituents and exhibit a larger refractive index in comparison to glasses synthesised through impregnation of silica matrices with a solution of (NH4)2Cr2O7.  相似文献   

17.
The effects of iron on the structural properties of Zn-borosilicate glasses have been studied using X-ray diffraction, IR spectroscopy and57Fe Mössbauer spectroscopy. Zn-borosilicate glasses were doped with α?Fe2O3. In the systems Na2O?ZnO?B2O3?SiO2?Fe2O3 the presence of only one crystalline phase, ZnFe2O4, was detected. X-ray diffraction showed that crystallization is more pronounced in the systems ZnO?B2O3?SiO2?Fe2O3. In these systems the presence of different crystalline phases, such as ZnO, γ?Fe2O3, Fe3O4, ZnFe2O4 and Fe3BO5, was detected. The crystallization of α?Zn2SiO4 in the system ZnO?B2O3?SiO2 was confirmed by X-ray diffraction and IR spectroscopy. The valence state and coordination of iron in Zn-borosilicate glasses were determined by57Fe Mössbauer spectroscopy.  相似文献   

18.
The distribution of Q-units of CaO–P2O5 glasses was described by the thermodynamic model of Shakhmatkin and Vedishcheva. The glass was considered as the ideal solution of CaO, P2O5, CaP2O6, Ca2P2O7, and Ca3P2O8. In the first step, molar Gibbs energies of considered species were taken from the FACT thermodynamic database. The obtained result was compared with 31P solid-state NMR study of Roiland. It was shown that the calculated values were in fairly good agreement with the experimental values. After that, the nonlinear regression treatment was used for optimization of molar Gibbs energies by minimizing the sum of squares of deviations between experimental and calculated Q-distribution. In such a manner, the non-ideality of the system was reflected. In the studied case, no significant improvement of obtained results was achieved by this procedure—thus, the ideal solution assumption included in the thermodynamic model of Shakhmatkin and Vedishcheva holds very well for the studied binary glasses.  相似文献   

19.

Simulation of 137Cs radioactive decay to 137Ba by an equiatomic substitution of Cs with Ba in a 30 Na2O, 10 Cs2O, 10 Al2O3, 10 Fe2O3, 40 P2O5 (mol%) glass was studied by X-ray diffraction, scanning electron microscopy, Fourier Transform Infrared spectroscopy, Mössbauer spectroscopy, and measurement of hydrolytic durability. Gradual Ba substitution for Cs yielded minor changes in the structural network but did not offer appreciable effect on phase composition and hydrolytic durability of the glasses.

  相似文献   

20.
Glasses of the composition XNa2O · 4Al2O3 (96-X) B2O3 (mole%) where X = 10, 20, 30 to which 0.03 g V2O5 per 100 g glass was added, were prepared by normal melting. Their absorption characteristics together with the corresponding V-free base glasses were determined before and after gamma irradiation. The characteristic spectra of the unirradiated glasses show absorption bands at 315, 470, 560–580, 610–650, 700–870, and 860–1000 nm, indicating the presence of vanadium ions in more than one oxidation state, viz, V5+, V4+, and V3+. Gamma irradation of V-containing glasses causes the formation of color centers in the glass matrices, with absorption bands at 330, 500, and 610 nm, and photoreduced [V3+] and [V2+] ions with absorption bands at 350–355 and 530–570 and 520 nm, respectively. Photoreduced [V4+] may also be formed, giving rise to absorptions at 690–700 and 750–800 nm. The induced vanadium ions are found to absorb at shorter wavelengths than the intrinsic ones. An explanation based on the difference in the field energy of the two states is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号