首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An expression that explicitly describes variations in the internal energy of the plasma that flows through a discontinuity is derived based on the complete system of boundary conditions for the MHD equations on the discontinuity surface. The dependence of the plasma heating on the magnetic field density and configuration in the vicinity of the discontinuity surface (i.e., on the MHD flow type) is studied. The conditions of plasma heating at discontinuities in a self-consistent analytical model of magnetic reconnection are discussed.  相似文献   

2.
3.
Shear flows perpendicular to the anti-parallel reconnecting magnetic field are often observed in magnetosphere and interplanetary plasmas, and in laboratory plasmas toroidal differential rotations can also be generated in magnetic confinement devices. Our study finds that such shear flows can generate bipolar or quadrupolar out-of-plane magnetic field perturbations in a two-dimensional resistive MHD reconnection without the Hall effects. The quadrupolar structure has otherwise been thought a typical Hall MHD reconnection feature caused by the in-plane electron convection. The results will challenge the conventional understanding and satellite observations of the signature of reconnection evidences in space plasmas.  相似文献   

4.
5.
Two-dimensional Hall magnetohydrodynamic simulations are used to determine the magnetic reconnection rate in the Hall limit. The simulations are run until a steady state is achieved for four initial current sheet thicknesses: L=1,5,10, and 20c/omega(pi), where c/omega(pi) is the ion inertial length. It is found that the asymptotic (i.e., time independent) state of the system is nearly independent of the initial current sheet width. Specifically, the Hall reconnection rate is weakly dependent on the initial current layer width and is partial differential Phi/ partial differential t less, similar 0.1V(A0)B0, where Phi the reconnected flux, and V(A0) and B0 are the Alfvén velocity and magnetic field strength in the upstream region. Moreover, this rate appears to be independent of the scale length on which the electron "frozen-in" condition is broken (as long as it is 相似文献   

6.
We formulate a rigorous nonlinear analytical model that describes the dynamics of the diffusion (reconnection) region in driven systems in the context of electron magnetohydrodynamics (EMHD). A steady-state analysis yields allowed geometric configurations and associated reconnection rates. In addition to the well-known open X-point geometry, elongated configurations are found possible. The model predictions have been validated numerically with two-dimensional EMHD nonlinear simulations, and are in excellent agreement with previously published work.  相似文献   

7.
8.
We demonstrate the existence of a new steady-state magnetic reconnection configuration which lies at the boundary of the basins of attraction between the Sweet-Parker and Hall reconnection configurations. The solution is linearly unstable to small perturbations and its identification required a novel iterative numerical technique. The eigenmodes of the unstable solution are localized near the X line, suggesting that the onset of fast reconnection in a weakly collisional plasma is initiated locally at the X line as opposed to remotely at the boundaries.  相似文献   

9.
10.
This article is concerned with a review of the prominent magnetohydrodynamic theories proposed to date to explain magnetic field reconnection. These theories fall into three categories: (i) resistive tearing-mode instability, (ii) steady externally driven processes, (iii) nonsteady externally driven processes. The purpose of this article is to give on the analytical side - (i) a detailed discussion including a critical appraisal of the existing pr ominent theories of magnetic reconnection, (ii) a further elaboration and more correct versions and extensions of some of the existing theories of magnetic reconnection, and a review of the laboratory and computational work on the problem. The controversies that surround the application of these theories to problems involving explosive releases of magnetic energy are discussed.  相似文献   

11.
The growth of collisionless magnetic reconnection is discovered to be a nonlinear electron self-reinforcing process. Accelerated by the reconnection electric field, the small portion of energetic electrons in the vicinity of the X point are found to be the cause of the fast reconnection rate. This new mechanism explains that recent simulation results of different reconnection evolutions (i.e., steady state, quasisteady state, or nonsteady state) are essentially determined by the availability of feeding plasma inflows. Simulations are carried out with open boundary conditions.  相似文献   

12.
Detailed measurements of spontaneous magnetic reconnection are presented. The experimental data, which were obtained in the new closed Versatile Toroidal Facility magnetic configuration, document the profile evolution of the plasma density, magnetic flux function, reconnection rate, and the current density during a spontaneous reconnection event in the presence of a strong guide magnetic field. The reconnection process is at first slow, which allows magnetic stress to build in the system while the current channel becomes increasingly narrow and intense. The onset of a fast reconnection event occurs as the width of the current channel approaches the ion-sound-Larmor radius rho s. During the reconnection event magnetically stored energy is channeled into energetic ion outflows and a rapid increase in the electron temperature.  相似文献   

13.
Results of structural, magnetic and transport properties of magnetic Co/SiO2 discontinuous multi-layers produced by sequential deposition are presented. Transmission electron microscopy (TEM) images show that the samples that are close to metal–insulation transition are composed by a connected network of metallic paths, and display an enhanced Hall Effect. The granular samples are composed by an almost periodic array of Co nanoparticles, and after annealing these samples show a clear evolution in the nanostructure, with increasing average Co grain sizes and decreasing size dispersion. Relationships between the nanostructure and magnetotransport properties are discussed and compared with previous results obtained in cosputtered films.  相似文献   

14.
The PWI/WFC data onboard Geotail during one burst time interval when Geotail is skimming a magnetic reconnection diffusion region in the near-Earth magnetotail is carefully analyzed.Both the whistler-mode wave and the electrostatic solitary wave are found within the region with density depletion on the boundary layer near the magnetic reconnection X-line.The whistler-mode wave is electromagnetic whistler wave propagating quasi-parallel to the ambient field with a small angle between the wave vector and the ambient magnetic field.The whistler-mode wave associated with ESWs suggests that enhanced electromagnetic whistler-mode fluctuations can also be generated after the decay of the ESWs,which is different from the 2-D PIC simulation results.  相似文献   

15.
Quanming Lu 《中国物理 B》2022,31(8):89401-089401
Magnetic reconnection underlies the physical mechanism of explosive phenomena in the solar atmosphere and planetary magnetospheres, where plasma is usually collisionless. In the standard model of collisionless magnetic reconnection, the diffusion region consists of two substructures: an electron diffusion region is embedded in an ion diffusion region, in which their scales are based on the electron and ion inertial lengths. In the ion diffusion region, ions are unfrozen in the magnetic fields while electrons are magnetized. The resulted Hall effect from the different motions between ions and electrons leads to the production of the in-plane currents, and then generates the quadrupolar structure of out-of-plane magnetic field. In the electron diffusion region, even electrons become unfrozen in the magnetic fields, and the reconnection electric field is contributed by the off-diagonal electron pressure terms in the generalized Ohm's law. The reconnection rate is insensitive to the specific mechanism to break the frozen-in condition, and is on the order of 0.1. In recent years, the launching of Cluster, THEMIS, MMS, and other spacecraft has provided us opportunities to study collisionless magnetic reconnection in the Earth's magnetosphere, and to verify and extend more insights on the standard model of collisionless magnetic reconnection. In this paper, we will review what we have learned beyond the standard model with the help of observations from these spacecraft as well as kinetic simulations.  相似文献   

16.
The role of single-particle dynamics in driven magnetic reconnection in collisionless plasmas is investigated experimentally and analytically. The trapping of particle orbits in the magnetic cusp is observed to allow fast reconnection in the absence of a macroscopic current layer, at a rate identical to that of vacuum. The development of an electrostatic potential structure around the magnetic X line during reconnection is predicted theoretically and observed experimentally.  相似文献   

17.
The production of energetic electrons during magnetic reconnection is explored with full particle simulations and analytic analysis. Density cavities generated along separatrices bounding growing magnetic islands support parallel electric fields that act as plasma accelerators. Electrons because of their low mass are fast enough to make multiple passes through these acceleration cavities and are therefore capable of reaching relativistic energies.  相似文献   

18.
Direct measurements of a collisionless current channel during driven magnetic reconnection are obtained for the first time on the Versatile Toroidal Facility. The size of the diffusion region is found to scale with the electron drift orbit width, independent of the ion mass and plasma density. Based on experimental observations, analytic expressions governing the dynamical evolution of the current profile and the formation of the electrostatic potential that develops in response to the externally imposed reconnection drive are established. This time response is closely linked to the presence of ion polarization currents.  相似文献   

19.
A catastrophe model for the onset of fast magnetic reconnection is presented that suggests why plasma systems with magnetic free energy remain apparently stable for long times and then suddenly release their energy. For a given set of plasma parameters there are generally two stable reconnection solutions: a slow (Sweet-Parker) solution and a fast (Alfvénic) Hall reconnection solution. Below a critical resistivity the slow solution disappears and fast reconnection dominates. Scaling arguments predicting the two solutions and the critical resistivity are confirmed with two-fluid simulations.  相似文献   

20.
提出了一种2维磁场重联模型。磁场重联过程中的电荷分离在等离子体中产生静电场,等离子体在电场中的漂移运动可以解释阿尔芬速度量级的出流。该磁场重联模型给出如下结论:Sweet-Parker模型描述的重联率强烈地依赖于电子质量与离子质量之比;反常电阻率正比于离子惯性长度和电流片宽度比值的平方; 相对论效应和高温等离子体中电子-正电子对的产生可以提高重联率; 电磁波的激发对于磁能的损耗是必要的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号