首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanoscale properties of thin films of conducting polymer polybithiophene (PBT) deposited under potentiostatic and potentiodynamic conditions were compared using ex-situ atomic force microscopy (AFM) and its extension called phase imaging (PI-AFM). While the morphologies of the films prepared using the two techniques were quite similar, the phase contrast measurements revealed a profound difference in the mechanisms of potentiostatic and potentiodynamic electropolymerization, as well as in the nanoscale crystallinity and grain structure of the resulting polymer films. The overall crystallinity and degree of order were always higher for films deposited at constant potential. The differences were especially pronounced at the early deposition stages (film thicknesses of ca. 10 nm).  相似文献   

2.
《Solid State Sciences》2012,14(10):1543-1549
Indium oxide (In2O3) thin films were prepared using thermal oxidation of metallic films. Indium metallic thin films were deposited onto glass substrates, by vacuum thermal evaporation. Optical and electronic transport properties of thermally oxidized In2O3 films were investigated and these properties were correlated with their preparation conditions, more exactly with oxidation temperatures (Tox = 623 K, 673 K and 700 K, respectively). Structural analysis, investigated by X-ray diffraction and electron diffraction, reveals that the obtained films possess a polycrystalline structure. The temperature dependence of electrical conductivity was studied using surface-type cells with Ag electrodes. The electronic transport mechanism, in respective films, is discussed in terms of crystallite boundary trapping, proposed by Seto. Some characteristic parameters such as energy barrier, impurity concentration, distribution of interface states, were determined. Transmission and reflection spectra were recorded and by using the values of these coefficients, some optical parameters were calculated (absorption coefficient, optical band gap, refractive index).  相似文献   

3.
We have explored electrochemically deposited pervoskite nanocrystalline porous bismuth iron oxide (BiFeO3) thin film electrode from alkaline bath for electrochemical supercapacitors. The pervoskite BiFeO3 nanocrystalline thin film electrode showed comparable specific capacitance of 81 F g−1 and electrochemical supercapacitive performance and stability in an aqueous NaOH electrolyte to that of commonly used ruthenium based pervoskites.  相似文献   

4.
Durrani SM  Khawaja EE  Al-Kuhaili MF 《Talanta》2005,65(5):1162-1167
Undoped thin films of tin oxide and those doped with indium oxide and nickel oxides were deposited by electron beam evaporation. The effects of the film thickness and preparation conditions (films prepared with or without the presence of oxygen environment during deposition) on the optical and carbon monoxide sensing properties of the films were studied. The films were characterized using X-ray diffraction and X-ray photoelectron spectroscopy and optical spectroscopy techniques. All the films were found to be amorphous. It was found that the sensitivity of the films to CO increased with the thickness and the porosity of the films. It was found that their selectivity to CO gas relative to CO2 and SO2 gases could be improved upon doping the films with indium (or nickel) oxide.  相似文献   

5.
6.
A perpendicular mesoporous platinum electrode with a flat surface is successfully synthesized by electrodeposition using titania nanopillars as template, and the electrochemical studies indicate that this material is a promising catalytic electrode for fuel cells because of its high surface area and perpendicular nanopores.  相似文献   

7.
自组装成膜法制TiO2薄膜   总被引:6,自引:0,他引:6  
采用有机分子自组装(Self-Assembly)成膜技术将硅烷偶联剂[(CH3O)3Si(CH2)3SH]组装在普通的玻片表面, 得到二维有的单层有机膜, 并将膜端基(SH)原位氧化为磺酸基(SO3H)。利用该功能基(SO3H)的吸附性, 从四氯化钛的水溶液中淀积制得了TiO2薄膜。X射线光电子能谱(XPS)和原子力显微镜(AFM)等研究显示, TiO2薄膜是均匀和连续的, 具有良好的透明性。  相似文献   

8.
Proton conductive membranes were prepared as thin films of about 10 μm thickness by an ion beam assisted plasma polymerization process. Argon ions were generated in a high frequency plasma and accelerated towards a PTFE target where CF fragments were released as a consequence of the ion impact. Various sulfur components (SO2, CF3SO3H or ClSO3H) were added to achieve proton conductivity by the formation of sulfonic acid groups. The CF fragments combined with the sulfur components to form a coherent thin film on a substrate. Mass spectrometric investigations revealed, however, that sulfur oxygen compounds were extremely delicate towards reduction to sulfur carbon compounds like CS2 or SCF2. The best membrane conductivities (>10−4 S/cm) and highest ion exchange capacities (0.15 mmol/g) were achieved with chlorosulfonic acid involved in the plasma polymerization process. Ultra-thin layers of these of these plasma polymers (ca. 300 nm) were subsequently deposited onto Nafion® membranes in order to suppress methanol permeation for a potential application in a direct methanol fuel cell (DMFC). The ratio of proton conductivity and methanol diffusion coefficient was employed for an assessment of the transport characteristics of the coated membrane. Diffusion coefficients were determined in a flow cell coupled to a mass spectrometer. The plasma polymer coating decreased both the methanol permeation and the proton conductivity. With a proton conductive plasma polymer coating the decrease of methanol diffusion could outweigh the loss of proton conductivity. Plasma coating offers a way to suppress methanol crossover in DMFCs and to maintaining the proton conductivity.  相似文献   

9.
The structure and morphology of ZnS thin films were investigated. ZnS thin films have been grown on an indium tin oxide glass substrate by electrodeposition method using zinc chloride and sodium thiosulfate solutions at room temperature. The X-ray diffraction patterns confirm the presence of ZnS thin films. From the AFM images, grain size decreases as the cathodic potential becomes more negative (from ?1.1 to ?1.3 V) at various deposition periods. Comparison between all the samples reveals that the intensity of the peaks increased, indicating better crystalline phase for the films deposited at ?1.1 V. These films show homogeneous and uniform distribution according to AFM images. On the other hand, XRD analysis shows that the number of ZnS peaks increased as deposition time was increased from 15 to 30 min at ?1.1 V. The AFM images show thicker films to be formed at ?1.1 V indicating more favourable condition for the formation of ZnS thin films.  相似文献   

10.
Thin films of neutral copper dithiolenes have been prepared by potentiostatic electrodeposition. This method allows the isolation of near infrared (NIR) active species, in a useable form, that are otherwise unobtainable by conventional chemical methods.  相似文献   

11.
12.
Clear aluminium oxide sols without precipitation were synthesized via a non-aqueous sol–gel technique using three different alcohols (ethanol, isopropanol and n-butyl alcohol) as solvent, aluminium sec-butoxide as a precursor and acetyl acetone as a chelating agent. Although all sols could be successfully used to prepare thin films, the most stable one was prepared with n-butyl alcohol. Highly transparent, homogenous and amorphous aluminium oxide thin films were obtained on Si substrates after a heat treatment at 500 °C. X-Ray photoelectron spectroscopy (XPS) and Fourier transform infrared absorption (FT-IR) spectroscopy revealed all films were hydroxide free. The optical and structural properties of the films were particularly investigated. Any significant difference except from thickness on the film properties was not observed by changing the alcohol. Refractive index was used as an indication of the porosity of the films and ranged from 1.54 to 1.60.  相似文献   

13.
Anatase TiO2 thin films with high optical modulation, better reversibility, fast switching time, and enhanced coloration efficiency were prepared by nebulized spray pyrolysis technique. X-ray diffraction study confirmed the formation of anatase phase TiO2 in the present work. This inference was substantiated from the Raman active modes of A1g, 2 B1g, and 3 Eg corresponding to O–Ti–O bond in TiO2. The PL emission peak observed at 400 nm is corresponds to the indirect transition (X1b?→?Γ3) from the conduction band to the valence band. The average reflectance of TiO2 thin films was varied from 31 to 20%. The electrochemical study revealed the excellent performance of TiO2 films with high optical modulation (ΔT?=?61%), fast switching kinetics (t b ?=?1.6 s, t c ?=?2.4 s), good coloration efficiency (100 cm2 C?1), and better reversibility (86%). The efficient electrochromic behavior of films may be due to the smooth microstructure nature, which provides an easy pathway for the diffusion and charge transfer process of Li+ ions in TiO2 film matrix. The fast transfer of Li+ ion was realized from the electrochemical impedance spectroscopic measurement.  相似文献   

14.
15.
The oxidation state and local geometry of the metal centers in amorphous thin films of Fe2O3 (Fe3+ oxidation state), CoFe2O4 (Co2+/Fe3+ oxidation states), and Cr2O3 (Cr3+ oxidation state) are determined using K edge X-ray absorption near-edge structure (XANES) spectroscopy and extended X-ray absorption fine structure (EXAFS) spectroscopy. The metal oxide thin films were prepared by the solid-state photochemical decomposition of the relevant metal 2-ethylhexanoates, spin cast as thin films. No peaks are observed in the X-ray diffraction patterns, indicating the metal oxides are X-ray amorphous. The oxidation state of the metals is determined from the edge position of the K absorption edges, and in the case of iron-containing samples, an analysis of the pre-edge peaks. In all cases, the EXAFS analysis indicates the first coordination shell consists of oxygen atoms in an octahedral geometry, with a second shell consisting of metals. No higher shells are observed beyond 3.5 Å for all samples, indicating the metal oxides are truly amorphous, consistent with X-ray diffraction results.  相似文献   

16.
Experiments on deposition of Cu(2)O films from basic copper sulfate solution show that copper also deposits. At low, but basic values of pH only copper deposits and at high pH only cuprous oxide deposits. In the intermediate range where both compete the system shows oscillations at "constant current." Linear stability analysis has been conducted for such an electrochemical cell to show that oscillations can take place in the parameter space identified in the experiments. The results are keeping with most of the experimental observations, which are many, but not with all. The physical mechanisms behind the oscillations are explained in terms of competing reactions.  相似文献   

17.
《Solid State Sciences》2012,14(9):1282-1288
SnO2 thin films were deposited on glass substrates by using Successive Ionic Layer Adsorption and Reaction (SILAR) method at room temperature. The film thickness effect on characteristic parameters such as structural, morphological, optical and electrical properties of the films was studied. Also, the films were annealed in oxygen atmosphere (400 °C, 30 min) and characteristic parameters of the films were investigated. The X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) studies showed that all the films exhibited polycrystalline nature with tetragonal structure and were covered well on glass substrates. After the investigation of the crystalline and surface properties of the films, it was found that they were improving with increasing film thickness. Optical band gap decreased from 3.90 eV to 3.54 eV and electrical conductivity changed between 0.015–0.815 (Ω-cm)−1 as the film thickness increased from 215 to 490 nm. The refractive index (n), optical static and high frequency dielectric constants (ɛo, ɛ) values were calculated by using the optical band gap values as a function of the film thickness.  相似文献   

18.
A novel method for preparing nano-supercapacitor arrays, in which each nano-supercapacitor consisted of electropolymerized Polypyrrole (PPy) electrode / porous TiO2 separator / chemical polymerized PPy electrode, was developed in this paper. The nano-supercapacitors were fabricated in the nano array pores of anodic aluminum oxide template using the bottom-up, layer-by-layer synthetic method. The nano-supercapacitor diameter was 80 nm, and length 500 nm. Based on the charge/discharge behavior of nano-supercapacitor arrays, it was found that the PPy/TiO2/PPy array supercapacitor devices performed typical electrochemical supercapacitor behavior. The method introduced here may find application in manufacturing nano-sized electrochemical power storage devices in the future for their use in the area of microelectronic devices and microelectromechanical systems.  相似文献   

19.
High quality lead telluride thin films were directly deposited onto n-type silicon (1 0 0) substrates by electrodeposition at room temperature. The deposition mechanism was studied using cyclic voltammetry. The films were characterized by scanning electron microscopy, energy dispersive X-ray, X-ray diffraction, and Fourier transform infrared spectroscopy. The results indicated that the deposited PbTe films exhibited a polycrystalline rock salt structure and good optical properties with a direct band gap of 0.31 eV.  相似文献   

20.
The dependence of the kinetic characteristics of electrochromic indicator devices based on films of amorphous tungsten oxide α-WO3 on the speed of reversible coloration of their working electrode with a film of this kind was studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号