首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ground-state energy of neutral helium is estimated variationally with a trial wavefunction of the form ϕ≈e −γ(rA/a o)ne−γ(rB/a o)n. This model represents a modification of traditional textbook examinations of this problem via inclusion of the power “n” as a second nonlinear variational parameter in addition to the usual effective nuclear charge γ and leads to an upper-limit on the ground state energy of −2.86107 E h (E h =1 hartree) in comparison with the traditional (n=1) result of −2.84766 E h . This result represents a reduction of the percentage overestimate from the true ground-state energy (−2.90373 E h ) of from 1.93 to 1.47. In comparison with the maximum accuracy obtainable from an uncorrelated trial wavefunction, −2.86168 E h , the present trial wavefunction reduces the percentage overestimate from 0.49 (n=1) to 0.021. The optimum values of (n, γ) are determined to be ≈(0.897, 1.825).  相似文献   

2.
3.
4.
The rare t-quark decays tcl j + l k and tc j k k induced by scalar-leptoquark doublets are considered within the minimal model involving four-color quark-lepton symmetry and the Higgs mechanism of quark and lepton mass splitting. The partial widths with respect to the decays being considered and the total widths Γ(tcl +l ) = Σj,k Γ(tcl j + l k ) and Γ(tcl +l ) = Σj,kΓ(tc j v k ) with respect to, respectively, the charged leptonic and neutrino modes are calculated. It is shown that, at scalar-leptoquark masses higher than the t-quark mass (m S > m t), the branching ratios for these modes are Br(tcl +l ) ≈ (3.5−0.4) × 10−5 and Br(tcṽ′v) ≈ (7.1−0.8) × 10−5 at m s = 180–250 GeV and an appropriate value of the leptoquark-mixing angle (sin β ≈ 0.2) and can increase for m S < m t to Br(tcl +l ) ≈ 0.03−0.002 and Br(tcl +l ) ≈ 0.46−0.05 for the charged mode at m S = 150–170 GeV for sin β ≈ 1 and sin β ≈ 0.2, respectively. In the cases being considered, t-quark decays to pairs of charged leptons can be accessible to detection at LHC. In the last case, these decays could manifest themselves (for example, in dilepton events) at the Tevatron as well. Original Russian Text ? P.Yu. Popov, A.D. Smirnov, 2006, published in Yadernaya Fizika, 2006, Vol. 69, No. 6, pp. 1006–1016.  相似文献   

5.
P K Kabir 《Pramana》2000,55(1-2):247-251
Inequality of the rates for K 0 → π+ e υ and K 0 → π e + ν transitions, reported by CPLEAR, and an asymmetry in the distribution of the dihedral angle between the π+π and e + e planes in K L → π+π e + e decays, found by KTeV, have been announced as demonstrations of T-noninvariance. These results are critically interpreted and compared as proofs of the failure of reciprocity.  相似文献   

6.
Ion cluster desorption yields from LiF were measured at PUC-Rio with ≈0.1 MeV/u N q+ (q = 2,4,5,6) ion beams by means of a time-of-fight (TOF) mass spectrometer. A 252Cf source mounted in the irradiation chamber allows immediate comparison of cluster emissions induced by ≈65 MeV fission fragments (FF). Emission of (LiF) n Li+ clusters are observed for both the N beams and the 252Cf fission fragments. The observed cluster size n varies from 1 to 6 for N q+ projectiles and from 1 to ≈40 for the 252Cf-FF. The size dependence of the Y(n) distributions suggests two cluster formation regimes: (i) recombination process in the outgoing gas phase after impact and (ii) emission of pre-formed clusters from the periphery of the impact site. The corresponding distribution of ejected negative cluster ions (LiF) n F closely resembles that of the positive secondary (LiF) n Li+ ions. The desorption yields of positive ions scale as Y(n) ∼ q 5. A calculation with the CASP code shows that this corresponds to a cubic scaling ∼S e 3 with the electronic stopping power S e , as predicted by collective shock wave models for sputtering and models involving multiple excitons (Frenkel pair sputtering). We discuss possible interpretations of the functional dependence of the evolution of the cluster emission yield Y(n) with cluster size n, fitted by a number of statistical distributions.  相似文献   

7.
We determined and tried to understand the spectroscopic and structural properties of small LiAr and LiAr2 molecules within a simple model considering LiAr as a result of interaction between a valence electron and a LiAr+ molecular ion. Potential energy curves, spectroscopic constants, and vibrational levels corresponding to the Li(2s, 2p, 3s, and 3p)+Ar dissociation are reported for the LiAr molecule. The depth of the potential well for the X 2Σ+ ground state is found to be 50 cm−1 (the corresponding experimental value is (42.5±1.2) cm1 [1]). R e is determined to be 9.36 a.u. (the experimental value is 9.24 a.u.). For the first excited state A, R e = 4.97 a.u. and D e = 993cm −1 (the corresponding experimental values are 4.68 a.u. and (925−40) cm−1, respectively [1]). The spacing between the vibrational levels for the ground and first excited states is in very good agreement with the experiment. For the ground state, the difference between our results and the data of the most recent experiment is about 1 cm−1. The model has been extended to study the LiAr2 molecule in two forms (linear and triangular). We have determined the potential energy surfaces of the states dissociating to Li(2s, 2p)+Ar2 and thus found the triangular form to be more stable as compared to the linear one. We have also calculated the transition energy between the ground state and first excited states of this molecule. The emission spectrum of the Li(2s)+Ar2→Li(2p)+Ar2 transition in both forms redshifts as compared to the Li(2s)→Li(2p) atomic transition.  相似文献   

8.
The excitation functions for the reactions127I(α, 2n)129Cs,127I(α, 4n)127Cs,133Cs(α, 2n)135La and133Cs(α, 4n)133La have been measured up to ≈50 MeVα-particle energy using the stacked foil activation technique. Measured excitation functions are compared with pre-equilibrium geometry dependent hybrid model calculations. It has been found that theoretical calculations using an initial exciton numbern 0=4 (2p+2n+0h) give good agreement with experimental excitation functions.  相似文献   

9.
N. N. Achasov 《JETP Letters》1996,63(8):601-606
It is shown that BR b1(1 P)→e + e )≃3.3· 10−7 and BR c1(1 P)→e + e )≃10−8. This gives realistic possibilities for searching for the production of χ b1(1 P) and ξ c1(1 P) states in e + e collisions, even on the present-day colliders, to say nothing of b and c-τ factories. Pis’ma Zh. éksp. Teor. Fiz. 63, No. 8, 569–574 (25 April 1996)  相似文献   

10.
D P Ahalpara 《Pramana》1979,12(2):179-201
The low-lying collective bands of positive parity states in (fp) shell nuclei are described in the deformed Hartree-Fock method by projecting states of definite angular momenta from ‘the lowest energy intrinsic states in (sd)−1 (fp) n+1 configurations. The modified Kuo-Brown effective interaction for (fp) shell and modified surface delta interaction (MSDI) for a hole in (sd) shell with a particle in (fp) shell have been used. The collective bands of states are in general well reproduced by the effective interactions. The excitation energies of the band head states are however off by about one MeV. The calculated magnetic moments of the band headj=3/2+ states are in reasonable agreement with experiment. Using effective chargese p=1.33e ande n=0.64e we get fairly good agreement forE(2) transitions. The hinderedM(1) transition strengths are reproduced to the correct order however they are slightly higher compared to experiment.  相似文献   

11.
《Pramana》2003,61(5):865-876
Particle production in Au+Au collisions has been measured in the PHOBOS experiment at RHIC for a range of collision energies for a large span of pseudorapidities, |η| < 5.4. Three empirical observations have emerged from this data set which require theoretical examination. First, there is clear evidence of limiting fragmentation. Namely, particle production in central Au + Au collisions, when expressed as dN/dη′ ( η′ ≡ – ybeam), becomes energy independent at high energy for a broad region of η′ around η′ = 0. This energy-independent region grows with energy, allowing only a limited region (if any) of longitudinal boost-invariance. Second, there is a striking similarity between particle production in e+eand Au + Au collisions (scaled by the number of participating nucleon pairs). Both the total number of produced particles and the longitudinal distribution of produced particles are approximately the same in e+eand in scaled Au + Au. This observation This presentation is based in large part on the PHOBOS summary talk by M Baker at the16th Int. Conf. on Ultrarelativistic Nucleus- Nucleus Collisions, Quark Matter 2002, Nantes, France was not predicted and has not been explained. Finally, particle production has been found to scale approximately with the number of participating nucleon pairs for (N part ) > 65. This scaling occurs both for the total multiplicity and for highp T particles (3 <p T < 4.5 GeV/c). This presentation is based in large part on the PHOBOS summary talk by M Baker at the16th Int. Conf. on Ultrarelativistic Nucleus-Nucleus Collisions, Quark Matter 2002, Nantes, France  相似文献   

12.
On the basis of elementary symmetry arguments it is shown that (1) if in classical mechanics there exists a quantity λ+Σiμiυi+1/2νυ 2 that is conserved, where λ,μ i, andν are particle parameters, then theμ i andν are all proportional to a single parameterμ and the quantityiBiμυi+C(λ+ 1/2Dμυ 2), whereDν/μ, is conserved for all values ofA, B i, andC; (2) if in relativistic mechanics there exists a quantity λ+Σiμiυi[1−(υ 2/c 2)]−1/2+νc[1−(υ 2/c 2)]−1/2 that is conserved, then theμ i andν are all proportional to a single parameterμ and the quantityAλ+ΣiBiμνi[1−(υ 2/c 2)]−1/2+Cμc [1−(υ 2/c 2)]−1/2 is conserved for all values ofA, B i, andC.  相似文献   

13.
14.
The Hartree-Bogoliubov (HB) framework of calculations has been applied for calculating various nuclear structure quantities for 154–166Dy mass chains. In this framework, the intrinsic quadrupole moments, the low-lying yrast states (E 2+ and E 4+) and occupation numbers for various shell model orbits have been obtained. The calculated results indicate that the observed onset of deformation in going from 154Dy to 166Dy arises due to enhanced occupation of (h 11/2)π orbit, increased polarization of (d 5/2)π orbit and increase in the occupation of down-slopping ‘k’ components of (i 13/2)υ and (h 9/2)υ orbits.   相似文献   

15.
General exact higher-dimensional (n+2), n>2 solutions in general theory of relativity of Einstein-Maxwell field equations for spherically symmetric distribution of charged pressure perfect fluid are expressed in terms of pressure extending 4-dimensional solutions presented by Bijalwan (Astrophys. Space Sci. 2011, doi:). Subsequently, metrics (e λ and e υ ), matter density and electric intensity are expressible in terms of pressure. Consequently, Pressure is found to be an invertible arbitrary function of ω (=c 1+c 2 r 2), where c 1 and c 2 (≠0) are arbitrary constants, and r is the radius of star, i.e. p=p(ω). We present a general solution for charged pressure fluid in terms for ω. We list and discuss some old and new solutions which fall in this category. Also, these solutions satisfy barotropic equation of state relating the radial pressure to the energy density. But we noticed that none of these solutions in terms of pressure for charged fluids has a well behaved neutral counter part for a spatial component of metric e λ i.e. choosing same spatial component for charged and neutral fluid. To illustrate the approach, we discovered a new solution for extended charged analogues of Schwarzschild interior solution in higher dimensions which is found to be well behaved only for n=2. The maximum mass found to be 1.512 M Θ with linear dimension 14.964 km. Physical quantities pressure, energy density, red-shift, velocity of sound and p/c 2 ρ are well behaved and monotonically decreasing towards the surface while adiabatic index and charge density are monotonically increasing. For brevity we don’t discuss the numerical results in detailed.  相似文献   

16.
On the basis of simple kinematic arguments it is shown that any quantity, depending only on the nature and velocity of a particle, that is conserved in a collision must, in classical mechanics, be of the form λ+Σiμiυi+1/2 2 or in relativistic mechanics of the form λ+Σiμiυi[1−(υ 2/c 2)]−1/2+νc [1−(υ 2/c 2)]−1/2 where λ,μ i, andν are particle parameters.  相似文献   

17.
The isoscalar-isovector (ρ-ω) interferences in the exclusive reactions π- pne + e - and π+ npe + e - near the ω threshold leads to a distinct difference of the dielectron invariant-mass distributions depending on beam energy. The strength of this effect is determined by the coupling of resonances to the nucleon vector-meson channels and other resonance properties. Therefore, a combined analysis of these reactions can be used as a tool for determining the baryon resonance dynamics. Received: 14 August 2001 / Accepted: 3 October 2001  相似文献   

18.
The Mellin-Barnes representation is used to improve the theoretical estimate of mass corrections to the width of a light pseudoscalar meson decay into a lepton pair, Pl + l . The full resummation of the terms ln(m l 22)(m l 22) n and (m l 22) n to the decay amplitude is performed, where m l is the lepton mass and Λ ≈ m ρ is the characteristic scale of the P → γ*γ* form factor. The total effect of the mass corrections for the e + e channel is negligible and, for the μ+μchannel, its order is of a few percent. The text was submitted by the authors in English.  相似文献   

19.
Anosov systems are mathematical models for chaotic systems in statistical mechanics and fluid dynamics. Most of these systems enjoy the property of positive entropy production. We introduce the concept of specific information gain (or specific relative entropy) h+) in Anosov systems and prove that it is identical to the entropy production rate e p +) defined by Ruelle and Gallavotti in Anosov systems. From this point of view, the entropy production rate e p + characterizes the degree of macroscopic irreversibility of the system. Received: 2 August 1999 / Accepted: 14 April 2000  相似文献   

20.
Charge transfer ΔQ = 0.35e at the Si-N bond in silicon nitride is determined experimentally using photoelectron spectroscopy, and the ionic formula of silicon nitride Si3+1.4N4−1.05 is derived. The electronic structure of α-Si3N4 is studied ab initio using the density functional method. The results of calculations (partial density of states) are compared with experimental data on X-ray emission spectroscopy of amorphous Si3N4. The electronic structure of the valence band of amorphous Si3N4 is studied using synchrotron radiation at different excitation energies. The electron and hole effective masses m e *m h * ≈ 0.5m e are estimated theoretically. The calculated values correspond to experimental results on injection of electrons and holes into silicon nitride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号