首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We consider the parabolic Anderson problem ∂ t u = κΔu + ξ(x)u on ℝ+×ℝ d with initial condition u(0,x) = 1. Here κ > 0 is a diffusion constant and ξ is a random homogeneous potential. We concentrate on the two important cases of a Gaussian potential and a shot noise Poisson potential. Under some mild regularity assumptions, we derive the second-order term of the almost sure asymptotics of u(t, 0) as t→∞. Received: 26 July 1999 / Revised version: 6 April 2000 / Published online: 22 November 2000  相似文献   

2.
We consider the asymptotic behavior of the solutions ofscaled convection-diffusion equations ∂ t u ɛ (t, x) = κΔ x (t, x) + 1/ɛV(t2,xɛ) ·∇ x u ɛ (t, x) with the initial condition u ɛ(0,x) = u 0(x) as the parameter ɛ↓ 0. Under the assumptions that κ > 0 and V(t, x), (t, x) ∈R d is a d-dimensional,stationary, zero mean, incompressible, Gaussian random field, Markovian and mixing in t we show that the laws of u ɛ(t,·), t≥ 0 in an appropriate functional space converge weakly, as ɛ↓ 0, to a δ-type measureconcentrated on a solution of a certain constant coefficient heat equation. Received: 23 March 2000 / Revised version: 5 March 2001 / Published online: 9 October 2001  相似文献   

3.
Let R be a prime ring with its Utumi ring of quotient U, H and G be two generalized derivations of R and L a noncentral Lie ideal of R. Suppose that there exists 0 ≠ a ∈ R such that a(H(u)u − uG(u)) n  = 0 for all u ∈ L, where n ≥ 1 is a fixed integer. Then there exist b′,c′ ∈ U such that H(x) = bx + xc′, G(x) = cx for all x ∈ R with ab′ = 0, unless R satisfies s 4, the standard identity in four variables.  相似文献   

4.
Consider the Cauchy problem ∂u(x, t)/∂t = ℋu(x, t) (x∈ℤd, t≥ 0) with initial condition u(x, 0) ≡ 1 and with ℋ the Anderson Hamiltonian ℋ = κΔ + ξ. Here Δ is the discrete Laplacian, κ∈ (0, ∞) is a diffusion constant, and ξ = {ξ(x): x∈ℤ d } is an i.i.d.random field taking values in ℝ. G?rtner and Molchanov (1990) have shown that if the law of ξ(0) is nondegenerate, then the solution u is asymptotically intermittent. In the present paper we study the structure of the intermittent peaks for the special case where the law of ξ(0) is (in the vicinity of) the double exponential Prob(ξ(0) > s) = exp[−e s ] (s∈ℝ). Here θ∈ (0, ∞) is a parameter that can be thought of as measuring the degree of disorder in the ξ-field. Our main result is that, for fixed x, y∈ℤ d and t→∈, the correlation coefficient of u(x, t) and u(y, t) converges to ∥w ρ−2 ℓ2Σz ∈ℤd w ρ(x+z)w ρ(y+z). In this expression, ρ = θ/κ while w ρ:ℤd→ℝ+ is given by w ρ = (v ρ) d with v ρ: ℤ→ℝ+ the unique centered ground state (i.e., the solution in ℓ2(ℤ) with minimal l 2-norm) of the 1-dimensional nonlinear equation Δv + 2ρv log v = 0. The uniqueness of the ground state is actually proved only for large ρ, but is conjectured to hold for any ρ∈ (0, ∞). empty It turns out that if the right tail of the law of ξ(0) is thicker (or thinner) than the double exponential, then the correlation coefficient of u(x, t) and u(y, t) converges to δ x, y (resp.the constant function 1). Thus, the double exponential family is the critical class exhibiting a nondegenerate correlation structure. Received: 5 March 1997 / Revised version: 21 September 1998  相似文献   

5.
In this paper, we study the initial-boundary value problem of porous medium equation ρ(x)u t  = Δu m  + V(x)h(t)u p in a cone D = (0, ∞) × Ω, where V(x)  ~  |x|s, h(t)  ~  ts{V(x)\,{\sim}\, |x|^\sigma, h(t)\,{\sim}\, t^s}. Let ω 1 denote the smallest Dirichlet eigenvalue for the Laplace-Beltrami operator on Ω and let l denote the positive root of l 2 + (n − 2)l = ω 1. We prove that if m < p £ 1+(m-1)(1+s)+\frac2(s+1)+sn+l{m < p \leq 1+(m-1)(1+s)+\frac{2(s+1)+\sigma}{n+l}}, then the problem has no global nonnegative solutions for any nonnegative u 0 unless u 0 = 0; if ${p >1 +(m-1)(1+s)+\frac{2(s+1)+\sigma}{n+l}}${p >1 +(m-1)(1+s)+\frac{2(s+1)+\sigma}{n+l}}, then the problem has global solutions for some u 0 ≥ 0.  相似文献   

6.
Summary We consider a model of random walk on ℤν, ν≥2, in a dynamical random environment described by a field ξ={ξ t (x): (t,x)∈ℤν+1}. The random walk transition probabilities are taken as P(X t +1= y|X t = x t =η) =P 0( yx)+ c(yx;η(x)). We assume that the variables {ξ t (x):(t,x) ∈ℤν+1} are i.i.d., that both P 0(u) and c(u;s) are finite range in u, and that the random term c(u;·) is small and with zero average. We prove that the C.L.T. holds almost-surely, with the same parameters as for P 0, for all ν≥2. For ν≥3 there is a finite random (i.e., dependent on ξ) correction to the average of X t , and there is a corresponding random correction of order to the C.L.T.. For ν≥5 there is a finite random correction to the covariance matrix of X t and a corresponding correction of order to the C.L.T.. Proofs are based on some new L p estimates for a class of functionals of the field. Received: 4 January 1996/In revised form: 26 May 1997  相似文献   

7.
We consider the following problem of finding a nonnegative function u(x) in a ball B = B(O, R) ⊂ R n , n ≥ 3:
- Du = V(x)u,     u| ?B = f(x), - \Delta u = V(x)u,\,\,\,\,\,u\left| {_{\partial B} = \phi (x),} \right.  相似文献   

8.
This paper considers the existence and large time behavior of solutions to the convection-diffusion equation u t −Δu+b(x)·∇(u|u| q −1)=f(x, t) in ℝ n ×[0,∞), where f(x, t) is slowly decaying and q≥1+1/n (or in some particular cases q≥1). The initial condition u 0 is supposed to be in an appropriate L p space. Uniform and nonuniform decay of the solutions will be established depending on the data and the forcing term.This work is partially supported by an AMO Grant  相似文献   

9.
The infinite integral ò0x dx/(1+x6sin2x)\int_0^{\infty}x\,dx/(1+x^6\sin^2x) converges but is hard to evaluate because the integrand f(x) = x/(1 + x 6sin2 x) is a non-convergent and unbounded function, indeed f() = → ∞ (k→ ∞). We present an efficient method to evaluate the above integral in high accuracy and actually obtain an approximate value in up to 73 significant digits on an octuple precision system in C++.  相似文献   

10.
In this article we study the exponential behavior of the continuous stochastic Anderson model, i.e. the solution of the stochastic partial differential equation u(t,x)=1+0tκΔxu (s,x) ds+0t W(ds,x) u (s,x), when the spatial parameter x is continuous, specifically xR, and W is a Gaussian field on R+×R that is Brownian in time, but whose spatial distribution is widely unrestricted. We give a partial existence result of the Lyapunov exponent defined as limt→∞t−1 log u(t,x). Furthermore, we find upper and lower bounds for lim supt→∞t−1 log u(t,x) and lim inft→∞t−1 log u(t,x) respectively, as functions of the diffusion constant κ which depend on the regularity of W in x. Our bounds are sharper, work for a wider range of regularity scales, and are significantly easier to prove than all previously known results. When the uniform modulus of continuity of the process W is in the logarithmic scale, our bounds are optimal. This author's research partially supported by NSF grant no. : 0204999  相似文献   

11.
Summary. The equation du=(au&rdquo;+bu′+cu) dtu γ W(dx,dt) is considered for γ∈(0,1). It is proved that u(t,·) has compact support for all t≥0 if u(0,·) does. This result extends a result of C. Mueller and E. Perkins who considered the case a=1,b=c=0. The proof does not use the nonstandard analysis unlike the one by C. Mueller and E. Perkins. Received: 6 September 1996 / In revised form: 12 February 1997  相似文献   

12.
In this paper, we study the initial-boundary value problem of the porous medium equation u t  = Δu m  + V(x)u p in a cone D = (0, ∞) × Ω, where V(x) ~ (1 + |x|) σ . Let ω 1 denote the smallest Dirichlet eigenvalue for the Laplace–Beltrami operator on Ω and let l denote the positive root of l 2 + (n − 2)l = ω 1. We prove that if m ≤ p ≤ m + (2 + σ)/(n + l), then the problem has no global nonnegative solutions for any nonnegative u 0 unless u 0 = 0; if p > m + (2 + σ)/n, then the problem has global solutions for some u 0 ≥ 0.  相似文献   

13.
For integers m ≥ 3 and 1 ≤ ℓ ≤ m − 1, we study the eigenvalue problems − u (z) + [( − 1)(iz) m  − P(iz)]u(z) = λu(z) with the boundary conditions that u(z) decays to zero as z tends to infinity along the rays argz=-\fracp2±\frac(l+1)pm+2\arg z=-\frac{\pi}{2}\pm \frac{(\ell+1)\pi}{m+2} in the complex plane, where P is a polynomial of degree at most m − 1. We provide asymptotic expansions of the eigenvalues λ n . Then we show that if the eigenvalue problem is PT\mathcal{PT}-symmetric, then the eigenvalues are all real and positive with at most finitely many exceptions. Moreover, we show that when gcd(m,l)=1\gcd(m,\ell)=1, the eigenvalue problem has infinitely many real eigenvalues if and only if one of its translations or itself is PT\mathcal{PT}-symmetric. Also, we will prove some other interesting direct and inverse spectral results.  相似文献   

14.
Summary. This is a continuation of our previous work [6] on the investigation of intermittency for the parabolic equation (∂/∂t)u=Hu on ℝ+×ℤ d associated with the Anderson Hamiltonian H=κΔ+ξ(·) for i.i.d. random potentials ξ(·). For the Cauchy problem with nonnegative homogeneous initial condition we study the second order asymptotics of the statistical moments <u(t,0) p > and the almost sure growth of u(t,0) as t→∞. We point out the crucial role of double exponential tails of ξ(0) for the formation of high intermittent peaks of the solution u(t,·) with asymptotically finite size. The challenging motivation is to achieve a better understanding of the geometric structure of such high exceedances which in one or another sense provide the essential contribution to the solution. Received: 10 December 1996 / In revised form: 30 September 1997  相似文献   

15.
An Application of a Mountain Pass Theorem   总被引:3,自引:0,他引:3  
We are concerned with the following Dirichlet problem: −Δu(x) = f(x, u), x∈Ω, uH 1 0(Ω), (P) where f(x, t) ∈C (×ℝ), f(x, t)/t is nondecreasing in t∈ℝ and tends to an L -function q(x) uniformly in x∈Ω as t→ + ∞ (i.e., f(x, t) is asymptotically linear in t at infinity). In this case, an Ambrosetti-Rabinowitz-type condition, that is, for some θ > 2, M > 0, 0 > θF(x, s) ≤f(x, s)s, for all |s|≥M and x∈Ω, (AR) is no longer true, where F(x, s) = ∫ s 0 f(x, t)dt. As is well known, (AR) is an important technical condition in applying Mountain Pass Theorem. In this paper, without assuming (AR) we prove, by using a variant version of Mountain Pass Theorem, that problem (P) has a positive solution under suitable conditions on f(x, t) and q(x). Our methods also work for the case where f(x, t) is superlinear in t at infinity, i.e., q(x) ≡ +∞. Received June 24, 1998, Accepted January 14, 2000.  相似文献   

16.
We obtain an integral representation of even functions of two variables for which the kernel [k 1(x + y) + k 2(x − y)], x, yR 2, is positive definite.  相似文献   

17.
We study positive solutions u of the Yamabe equation cm Du-s( x) u+k( x) u\fracm+2m-2=0{c_{m} \Delta u-s\left( x\right) u+k\left( x\right) u^{\frac{m+2}{m-2}}=0}, when k(x) > 0, on manifolds supporting a Sobolev inequality. In particular we get uniform decay estimates at infinity for u which depend on the behaviour at infinity of k, s and the L Γ-norm of u, for some G 3 \tfrac2mm-2{\Gamma\geq\tfrac{2m}{m-2}}. The required integral control, in turn, is implied by further geometric conditions. Finally we give an application to conformal immersions into the sphere.  相似文献   

18.
Let c n be the Fourier coefficients of L(sym m f, s), and Δρ(x; sym m f) be the error term in the asymptotic formula for ∑ nx c n . In this paper, we study the Riesz means of Δρ(x; sym m f) and obtain a truncated Voronoi-type formula under the hypothesis Nice(m, f).  相似文献   

19.
The dispersive properties of the wave equation u tt +Au=0 are considered, where A is either the Hermite operator −Δ+|x|2 or the twisted Laplacian −( x iy)2/2−( y +ix)2/2. In both cases we prove optimal L 1L dispersive estimates. More generally, we give some partial results concerning the flows exp (itL ν ) associated to fractional powers of the twisted Laplacian for 0<ν<1.  相似文献   

20.
We study the large time behaviour of nonnegative solutions of the Cauchy problemu tu mu p,u(x, 0)=φ(x). Specifically we study the influence of the rate of decay ofφ(x) for large |x|, and the competition between the diffusion and the absorption term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号