首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The cobalt, nickel, copper and zinc atoms in bis(1,10-phenanthroline)bis(salicylato-O)metal(II) monomeric octahedral complexes [M(Hsal)2(phen)2nH2O, (M: Co(II), n=1; Cu(II), n=1.5 and Ni(II), Zn(II), n=2) are coordinated by the salicylato monoanion (Hsal) through the carboxyl oxygen in a monodentate fashion and by the 1,10-phenanthroline (phen) molecule through the two amine nitrogen atoms in a bidentate chelating manner. On the basis of the DTGmax, the thermal stability of the hydrated complexes follows order: Ni(II) (149°C)>Co(II) (134°C)>Zn(II) (132°C)>Cu(II) (68°C) in static air atmosphere. In the second stage, the pyrolysis of the anhydrous complexes takes place. The third stage of decomposition is associated with a strong exothermic oxidation process (DTA curves: 410, 453, 500 and 450°C for the Co(II), Ni(II), Cu(II) and Zn(II) complexes, respectively). The final decomposition products, namely CoO, NiO, CuO and ZnO, were identified by IR spectroscopy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Complexes of the type [M(pash)Cl] and [M(Hpash)(H2O)SO4] (M=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); Hpash = p-amino acetophenone salicyloyl hydrazone) have been synthesized and characterized by elemental analyses, molar electrical conductance, magnetic moments, electronic, ESR and IR spectra, thermal studies and X-ray powder diffraction. All the complexes are insoluble in common organic solvents and are non-electrolytes. The magnetic moment values and electronic spectra indicate a square-planar geometry for Co(II), Ni(II) and Cu(II) chloride complexes and spin-free octahedral geometry for the sulfato complexes. The ligand coordinates through >C=N–,–NH2 and a deprotonated enolate group in all the chloro complexes, and through >C=N–, >C=O and–NH2 in the sulfato complexes. Thermal analyses (TGA and DTA) of [Cu(pash)Cl] show a multi-step exothermic decomposition pattern. ESR spectral parameters of Cu(II) complexes in solid state at room temperature suggest the presence of the unpaired electron in d x 2 ? y 2 . X-ray powder diffraction parameters for [Cu(pash)Cl] and [Ni(Hpash)(H2O)SO4] correspond to tetragonal and orthorhombic crystal lattices, respectively. The complexes show a fair degree of antifungal activity against Aspergillus sp., Stemphylium sp. and Trichoderma sp. and moderate antibacterial activity against E. coli and Clostridium sp.  相似文献   

3.
Conditions for the preparation of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II)3,3-dimethylglutarates were investigated and their quantitative composition, solubility in water at 293 K and magnetic moments were determined. IR spectra and powder diffraction patterns of the complexes prepared with general formula MC7H10O4nH2O (n=0−2) were recorded and their thermal decomposition in air were studied. During heating the hydrated complexes of Mn(II),Co(II), Ni(II) and Cu(II) are dehydrated in one step and next all the anhydrous complexes decompose to oxides directly (Mn, Co, Zn) or with intermediate formation free metal (Ni,Cu) or oxocarbonates (Cd). The carboxylate groups in the complexes studied are bidentate. The magnetic moments for the paramagnetic complexes of Mn(II), Co(II), Ni(II) and Cu(II)attain values 5.62, 5.25, 2.91 and 1.41 M.B., respectively. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Complexes with chemical compositions VO(Hatth)2SO4, VO(Hatth)2SO4·py, [M(Hatth)2Cl·H2O]Cl [M = Mn(II), Co(II) and Ni(II)], [Cu(Hatth)2Cl]2Cl2, [Cu(Hatth)2· Cl·py]Cl, [Cd(Hatth)2Cl]Cl, M(Hatth)2Cl2 [M = Zn(II) and Hg(II)], VO(atth)2, VO(atth)2py, M(atth)2(py)2 [M = Mn(II) and Cu(II)], M(atth)2(H2O)2 [M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II)], Hatth = 2-acetylthiophene-2-thenoylhydrazone, and atth, its deprotonated form, have been prepared and characterized by analytical data, molar conductance, magnetic susceptibility, electronic and photoacoustic, ESR, IR and NMR spectral studies. X-ray diffraction study has been used to determine the shape and the dimensions of the unit lattice of copper(II) complexes.  相似文献   

5.
Conditions for the preparation of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) 4-methylphthalates were investigated and their composition, solubility in water at 295 K and magnetic moments were determined. IR spectra and powder diffraction patterns of the complexes prepared with molar ratio of metal to organic ligand of 1.0:1.0 and general formula: M [ CH3C6H3(CO2)2nH2o (n=1-3) were recorded and their decomposition in air were studied. During heating the hydrated complexes are dehydrated in one (Mn, Co, Ni, Zn, Cd) or two steps (Cu) and next the anhydrous complexes decompose to oxides directly (Cu, Zn), with intermediate formation of carbonates (Mn, Cd), oxocarbonates (Ni) or carbonate and free metal (Co). The carboxylate groups in the complexes studied are mono- and bidentate (Co, Ni), bidentate chelating and bridging (Zn) or bidentate chelating (Mn, Cu, Cd). The magnetic moments for paramagnetic complexes of Mn(II), Co(II), Ni(II) and Cu(II) attain values 5.92, 5.05, 3.36 and 1.96 M.B., respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) 3-methylglutarates were prepared as solids with general formula MC6 H8 O4 ×n H2 O, where n =0–8. Their solubilities in water at 293 K were determined (7.0×10−2 −4.2×10−3 mol dm−3 ). The IR spectra were recorded and thermal decomposition in air was investigated. The IR spectra suggest that the carboxylate groups are mono- or bidentate. During heating the hydrated complexes lose some water molecules in one (Mn, Co, Ni, Cu) or two steps (Cd) and then mono- (Cu) or dihydrates (Mn, Co, Ni) decompose to oxides directly (Mn, Cu, Co) or with intermediate formation of free metals (Co, Ni). Anhydrous Zn(II) complex decomposes directly to the oxide ZnO. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Complexes of the type [M(painh)(H2O)2X], where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); X = Cl2 or SO4; painh = p-amino acetophenone isonicotinoyl hydrazone, have been synthesized and characterized by spectral and other physico-chemical techniques. The synthesized complexes are stable powders, insoluble in common organic solvents such as ethanol, benzene, carbon tetrachloride, chloroform and diethyl ether, and are non-electrolytes. Thermogravimetric Analysis (TGA) and Differential Thermal Analysis (DTA) studies show that the organic ligand decomposes exothermically through various steps. TGA and Infrared (IR) spectral studies indicate the presence of coordinated water in the metal complexes. Magnetic susceptibility measurements and electronic spectra suggest that Mn(II), Co(II), and Ni(II) complexes are paramagnetic with octahedral geometry, whereas Cu(II) complexes have distorted octahedral geometry. The neutral bidentate ligand bonds through >C=O and >C=N–groups in all the complexes. Electron Spin Resonance (ESR) spectra in the solid state show axial symmetry for [Cu(painh)(H2O)2(SO4)] and elongated rhombic symmetry for [Cu(painh)(H2O)2Cl2], suggesting an elongated tetragonally-distorted octahedral structure for both complexes. X-ray powder diffraction parameters for two complexes correspond to tetragonal and orthorhombic crystal lattices. The metal complexes show fair antifungal activity against Rizoctonia sp., Aspergillus sp., Stemphylium sp., and Penicillium sp. and appreciable antibacterial activity against Pseudomonas sp. and Escherichia coli.  相似文献   

8.
The triethanolamine complexes, [M(tea)2]sq·nH2O, (n=2 for Co(II), n=0 for Ni(II), Cu(II) and n=1 for Cd(II), tea=triethanolamine, sq2−=squarate), have been synthesized and characterized by elemental analyses, magnetic susceptibility and conductivity measurements, UV-Vis and IR spectra, and thermal analyses techniques (TG, DTG and DTA). The Co(II), Ni(II) and Cu(II) complexes possess octahedral geometry, while the Cd(II) complex is monocapped trigonal prismatic geometry. Dianionic squarate behaves as a counter ion in the complexes. The thermal decomposition of these complexes takes place in three stages: (i) dehydration, (ii) release of the tea ligands and (iii) burning of organic residue. On the basis of the first DTGmax of the decomposition, the thermal stability of the anhydrous complexes follows the order: Ni(II), 289°C>Co(II), 230°C>Cu(II), 226°C>Cu(II), 170°C in static air atmosphere. The final decomposition products — the respective metal oxides — were identified by FTIR spectroscopy.  相似文献   

9.
The thermal properties of the Ni(II), Co(II) and Cu(II) complexes of glycine were determined using TG, DTG and DSC techniques. The complexes, MGly2·nH2O (n = 1, 2), dehydrated in the temperature range of 75 to 200°C, followed by the decomposition of the anhydrous compounds in the temperature range of 200 to 400°C. The thermal stability of the complexes, as determined by procedural decomposition temperatures, was: Ni(II) >Co(II) >Cu(II).  相似文献   

10.
The 1,10-phenanthroline (phen) complexes of Co(II), Ni(II), Cu(II) and Cd(II) orotates were synthesized and characterized by elemental analysis, magnetic susceptibility, spectral methods (UV-vis and FTIR) and thermal analysis techniques (TG, DTG and DTA). The Co(II), Ni(II), Cu(II) and Cd(II) ions in diaquabis(1,10-phenanthroline)metal(II) diorotate octahedral complexes [M(H2O)2(phen)2](H2Or)2·nH2O (M=Co(II), n=2.25; Ni(II), n=3; Cu(II) and Cd(II), n=2) are coordinated by two aqua ligands and two moles of phen molecules as chelating ligands through their two nitrogen atoms. The monoanionic orotate behaves as a counter ion in the complexes. On the basis of the first DTGmax, the thermal stability of the hydrated complexes follows the order: Cd(II), 68°C 68°C  相似文献   

11.
A new series of 14-membered pendant arm hexaazamacrocyclic complexes of the type [MLX2] · [M = Co(II), Ni(II), Cu(II) or Zn(II) for X = Cl; Co(II), Ni(II), Cu(II) or Zn(II) for X = NO3] has been synthesized by metal template condensation of 1,2-phenylenediamine and 1,4-phenylenediamine with formaldehyde in methanol. The mode of bonding and overall geometry of these complexes have been deduced by elemental analyses, molar conductance values, FT-IR, 1H-NMR, 13C-NMR, EPR, ESI-mass and UV–VIS along with magnetic measurement studies. The fluorescence and UV–VIS studies revealed a significant binding ability to DNA.  相似文献   

12.
2-Hydroxy salicylhydrazide isatin hydrazone (L) and its Mn (II), Co (II), Ni (II), Cu (II), and Zn (II), metal complexes were synthesized. 1H NMR, UV–Vis, IR spectroscopy and elemental (CHN/S) analysis techniques were applied for characterization. TG/DTA techniques revealed that all the synthetic compounds are thermally stable up to 300 °C. They were found non-electrolytes in nature. Furthermore, all these complexes were evaluated for antiglycation and DPPH radical scavenging activities. They showed varying degree of activity with IC50 values between 168.23 and 269.0 μM in antiglycation and 29.63–57.71 μM in DPPH radical scavenging activity. Mn (II), Co (II), Ni (II), Cu (II), and Zn (II), metal complexes showed good antiglycation as well as DPPH radical scavenging activity. The IC50 values for antiglycation activity are 168.23 ± 2.37, 234.27 ± 4.33, 257.1 ± 6.43, 267.7 ± 8.43, 269.0 ± 8.56 Ni for Co, Zn, Mn, Cu, and Ni complexes, respectively, while IC50 value were found to be 29.63 ± 2.76, 31.13 ± 1.41, 35.16 ± 2.45, 43.53 ± 3.12, 57.71 ± 2.61 μM for Cu, Zn, Mn, Co and Ni complexes, respectively, for DPPH radical scavenging activity. These synthesized metal complexes were found to be better active than standards Rutin (IC50 = 294.46 μM) for anti-glycation, and tert-butyl-4-hydroxyanisole (IC50 = 44.7 μM) for DPPH radical scavenging activity.  相似文献   

13.
The new orotic acid complexes, [MCl2(H2O)3(H3Or)], M=Co(II), Ni(II) and [CuCl2(H2O)(H3Or)3] · H2O, were synthesized and characterized by elemental analysis, magnetic susceptibility, spectral (Diffuse reflectance UV–Vis and FTIR) methods, and simultaneous thermal analysis (TG, DTG and DTA) techniques. Physical measurements indicate that the neutral orotic acid ligands are bonded to metal ions through the carbonyl groups. Two thermal processes of the complexes can occur: dehydration and pyrolytic decomposition. On the basis of the DTGmax, the thermal stability of the complexes follows the order: Co(II) (122 °C) > Cu(II) (77 °C) > Ni(II) (66 °C).  相似文献   

14.
The hippurates of Co(II), Ni(II), Cu(II) and Zn(II) were isolated from the solution, their quantitative composition and the way of coordination of metal — ligand were determined and the conditions and products of thermal decomposition during heating in air atmosphere up to 1273 K were studied. The complexes of Ni(II), Cu(II) and Zn(II) heated lose some water molecules and then decompose to MO. The hippurate of Co(II) heated loses some water molecules and then decomposes to CoO with intermediate formation Co3O4.
Zusammenfassung Aus Lösung wurden die Co(II)-, Ni(II)-, Cu(II)- und Zn(II)-Salze der Hippursäure gewonnen, ihre quantitative Zusammensetzung sowie die Art der Koordination der Metall-Ligandenbindung bestimmt. Weiterhin wurden die Bedingungen und Produkte der thermischen Zersetzung beim Erhitzen in einer Luftatmosphäre bis 1273 K untersucht. Die Komplexe von Ni(II), Cu(II) und Zn(II) verlieren beim Erhitzen ein paar Moleküle Wasser und zersetzen sich anschlieend zu MO. Co(II)-hippurat gibt beim Erhitzen einige Moleküle Wasser ab und zersetzt sich dann über die Zwischenstufe Co3O4 zu CoO.
  相似文献   

15.
Although salens and imidazoles are well-studied motifs among bioactive and therapeutic agents, their properties when combined in transition metal complexes are not well developed. To explore the structure/reactivity of this class of compounds, a salen-based ligand, namely (2,2′-{1,2-ethanediylbis[nitrilo(E)methylylidene]}diphenol, S), and its binary (MS) and ternary (MSI) complexes (I = imidazole; M = Co (II), Ni (II), Cu (II), Cd (II), Al (III), and La (III)) have been synthesized and fully characterized by standard physicochemical and theoretical methods. Evidence from structural analysis tools along with DFT modeling revealed an unusual monobasic tridentate salen binding mode, involving the phenolic oxygen, the nitrogen of the azomethine group, and NH group formed via phenol-to-cyclohexadienone tautomerization, giving rise to a general molecular formula of MSI complexes as [M(S)(I)2(Cl)] for M (II) = Co, Ni, Cu and Cd or [M(S)(I)(Cl)2] for M (III) = Al and La, respectively. The antimicrobial activities of S, MS, and MSI were screened against several bacterial and fungal strains. Of all tested complexes, CdS and CuSI were the most effective antimicrobials, giving larger inhibition zones than the reference antibiotics. The antimicrobial efficacy for the MS complexes follows the order: CdS > gentamicin > CuS > NiS > CoS > LaS > AlS > S, whereas MSI complex, potencies are ordered as CuSI > gentamicin > CdSI >NiSI > CoSI > LaSI > AlSI > S. In vitro cytotoxicity screening of MSI complexes disclosed that both CuSI and CdSI exhibited higher activity against human liver (Hep-G2) and breast (MDA-MB231) carcinoma cell lines than the reference (cisplatin) drug. The satisfactory bioactivities observed for several of these compounds supports the underlying design idea for combining important bioactive motifs for possible therapeutic benefit.  相似文献   

16.
The thermal properties of the Cu(II), Ni(II) and Co(II) complexes of iminodiacetic acid (H2IMDA) were determined using TG, DTG and DSC techniques. The complexes, of general formula, MIMDA-2H2O evolved water of hydration from 50 to 150°C which was followed by the decomposition of the anhydrous complex in the 250 to 400°C temperature range. The thermal stability, as determined by procedural decomposition temperatures, was: Ni(II) >Co(II) >Cu(II). The thermal stability is discussed in terms of IR spectra, ΔH, and ΔS, as well as thermal data.  相似文献   

17.
The complexes Mn(II), Co(II), Ni(II) and Zn(II) with 4-oxo-4H-1-benzopyran-3-carboxaldehyde were synthesized and characterized by elemental analysis, infrared and UV spectroscopy, X-ray diffraction patterns, magnetic susceptibility, thermal gravimetric analysis, conductivity and also solubility measurements in water, methanol and DMF solution at 298 K. They are polycrystalline compounds with various formula and different ratio of metal ion:ligand. Their formula are following: [MnL2(H2O)](NO3)2·2H2O, [CoL2](NO3)2·3H2O, [NiL2](NO3)2·3H2O, [CuL2](NO3)2·H2O and [ZnL3](NO3)2, where L = C10H6O3. The coordination of metal ions is through oxygen atoms present in 4-position of γ-pyrone ring and of aldehyde group of ligand. Chelates of Mn(II), Co(II), Ni(II) and Cu(II) obey Curie–Weiss law and they are high-spin complexes with the weak ligand fields. The thermal stability of analyzed complexes was studied in air at 293–1,173 K. On the basis of the thermoanalytical curves, it appears that thermal stability of anhydrous analysed chelates changed following: Cu (423 K) < Zn (438 K) ~ Co (440 K) < Ni (468 K). The gaseous products of thermal decomposition of those compounds in air atmosphere are following: CO2, CO, NO2, N2O, hydrocarbons and in case of hydrates also water. The molar conductance data confirm that the all studied complexes are 1:2 electrolytes in DMF solution.  相似文献   

18.
The reactions of Co(II), Ni(II), and Cu(II) chlorides and bromides and their metallic powders with tetrazol-1-yl-tris(hydroxymethyl)methane (L) afforded new complexes ML2Hal2 · mH2O(M = Co(II) or Ni(II), Hal = Cl; M = Cu(II), Hal = Cl or Br, m = 0; and M = Co(II) or Ni(II), Hal = Br, m = 2), MLnCl2 (M = Co(II) or Ni(II), n = 2 or 4; M = Cu(II), n = 2), and MLnBr2 · mH2O (M = Ni(II), n = 2, m = 2; M = Cu(II), n = 2, m = 0). The compositions and structures of the synthesized complexes were determined by elemental analysis, IR spectroscopy (50–4000 cm−1), and X-ray diffraction analysis. The introduction of a bulky substituent into position 1 of the tetrazole cycle was shown to exert almost no effect on the coordination mode but affected the composition and structure of the complexes.  相似文献   

19.
Polymeric chelates of the type [ML2]n where M = Ni(II), Cu(II), Zn(II) or Co(II), L = poly(resacetophenone diyl ethylene)s, andn= degree of polymerization, have been synthesized. Their structures have been elucidated on the basis of analytical, magnetic, electronic and IR spectral studies. Electronic spectra in conjunction with magnetic moments are in accord with an octahedral environment around the central metal ion in all polymeric chelates except Cu(II) and Zn(II) polymeric chelates which have been shown to possess square planar and tetrahedral geometries, respectively. IR spectral studies further suggest that the metal ions are coordinated through the oxygens of the carbonyl and the phenolic hydroxyl groups. All the chelates are paramagnetic except Zn(II), which is found to be diamagnetic.  相似文献   

20.
Octahedral complexes of the general composition [M(II)(BAMQH)2]X2 (where M = Cu(II), Ni(II), Co(II); X = Cl, I, ClO4 and BAMQH is biacetalmonoquinolylhydrazone); [M(II)(BAMQH)Cl2.H2O] (where M = Mn(II), Fe(III)) and penta-coordinated [VO(BAMQH)2]SO4 have been synthesized and characterized by magnetic susceptibility, optical and ESR studies in the polycrystalline and frozen states. [Ni(II)(BAMQH)2]Cl2 has tetrahedral geometry. Bidentate nature of the ligand is assumed in [Ni(II)(BAMQH)2]Cl2 and [VO(BAMQH)2]SO4 complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号