首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Whereas Large Eddy Simulation (LES) of single-phase flows is already widely used in the CFD world, even for industrial applications, LES of two-phase interfacial flows, i.e. two-phase flows where an interface separates liquid and gas phases, still remains a challenging task. The main issue is the development of subgrid scale models well suited for two-phase interfacial flows. The aim of this work is to generate a detailed data base from direct numerical simulation (DNS) of two-phase interfacial flows in order to clearly understand interactions between small turbulent scales and the interface separating the two phases. This work is a first contribution in the study of the interface/turbulence interaction in the configuration where the interface is widely deformed and where both phases are resolved by DNS. To do this, the interaction between an initially plane interface and a freely decaying homogeneous isotropic turbulence (HIT) is studied. The densities and viscosities are the same for both phases in order to focus on the effect of the surface tension coefficient. Comparisons with existing theories built on wall-bounded or free-surface turbulence are carried out. To understand energy transfers between the interfacial energy and the turbulent one, PDFs of the droplet sizes distribution are calculated. An energy budget is carried out and turbulent statistics are performed including the distance to the interface as a parameter. A spectral analysis is achieved to highlight the energy transfer between turbulent scales of different sizes. The originality of this work is the study of the interface/turbulence interactions in the case of a widely deformed interface evolving in a turbulent flow.  相似文献   

2.
大涡模拟 能够以比较合理的计算成本, 提供更多详细的湍流信息, 故近年来已经广泛地应用于科学和工程领域, 并也成为内燃机缸内湍流流动与燃烧过程模拟计算的最有潜力的数值方法.综合现有研究成果, 对内燃机中大涡模拟的研究进展和模拟方法进行了比较全面的评述.介绍了大涡模拟的基本概念、方法、亚网格模型,着重讨论了内燃机缸内冷态流场、燃油喷雾过程以及两相液雾湍流燃烧大涡模拟的国内外研究进展.最后论述了大涡模拟在内燃机应用中当前需要解决的问题及其发展趋势.  相似文献   

3.
In the present work we study potential applicability of large eddy simulation (LES) method for prediction of flatness and skewness of compressible magnetohydrodynamic (MHD) turbulence. The knowledge of these quantities characterizes non-Gaussian properties of turbulence and can be used for verification of hypothesis on Gaussianity for the turbulent flow under consideration. Prediction accuracy of these quantities by means of LES method directly determines efficiency of reconstruction of probability density function (PDF) that depends on used subgrid-scale (SGS) parameterizations. Applicability of LES approach for studying of PDF properties of turbulent compressible magnetic fluid flow is investigated and potential feasibilities of five SGS parameterizations by means of comparison with direct numerical simulation results are explored. The skewness and the flatness of the velocity and the magnetic field components under various hydrodynamic Reynolds numbers, sonic Mach numbers, and magnetic Reynolds numbers are studied. It is shown that various SGS closures demonstrate the best results depending on change of similarity numbers of turbulent MHD flow. The case without any subgrid modeling yields sufficiently good results as well. This indicates that the energy pile-up at the small scales that is characteristic for the model without any subgrid closure, does not significantly influence on determination of PDF. It is shown that, among the subgrid models, the best results for studying of the flatness and the skewness of velocity and magnetic field components are demonstrated by the Smagorinsky model for MHD turbulence and the model based on cross-helicity for MHD case. It is visible from the numerical results that the influence of a choice subgrid parametrization for the flatness and the skewness of velocity is more essential than for the same characteristics of magnetic field.  相似文献   

4.
大涡模拟及其在湍流燃烧中的应用   总被引:10,自引:0,他引:10  
大涡模拟作为一种研究湍流流动和湍流燃烧的有效手段,在国际上已经得到广泛应用。本文在回顾了大涡模拟(LES)的基本思想及其实施方法的基础上着重介绍了前人在大涡模拟的亚格子湍流模式和亚格子燃烧模式中的研究成果,同时给出了采用不同亚格子模式的大涡模拟在湍流燃烧中的应用实例,指出了大涡模拟在湍流燃烧中的重要作用,为大涡模拟的进一步发展和应用提供参考。   相似文献   

5.
Generalized Lattice Boltzmann equation (GLBE) was used for computation of turbulent channel flow for which large eddy simulation (LES) was employed as a turbulence model. The subgrid‐scale turbulence effects were simulated through a shear‐improved Smagorinsky model (SISM), which is capable of predicting turbulent near wall region accurately without any wall function. Computations were done for a relatively coarse grid with shear Reynolds number of 180 in a parallelized code. Good numerical stability was observed for this computational framework. The results of mean velocity distribution across the channel showed good correspondence with direct numerical simulation (DNS) data. Negligible discrepancies were observed between the present computations and those reported from DNS for the computed turbulent statistics. Three‐dimensional instantaneous vorticity contours showed complex vortical structures that appeared in such flow geometries. It was concluded that such a framework is capable of predicting accurate results for turbulent channel flow without adding significant complications and the computational cost to the standard Smagorinsky model. As this modeling was entirely local in space it was therefore adapted for parallelization. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
在湍流数值模拟方法中,大涡模拟方法可以提供丰富的大涡旋信息,已逐渐成为复杂湍流问题数值研究的重要方法。而大涡模拟中,最重要的一环是尽量准确地构建能反映流场物理本质特征的亚格子应力模型。基于该思想,将一种新型的大涡模拟亚格子应力模型-Vreman亚格子应力模型用于高雷诺数三维后台阶流动的求解,计算结果与实验结果进行对比分析结果较吻合,验证了该模型的可靠性。这是对该模型用于无任何均匀流动方向的高雷诺数复杂湍流非定常流动的首次检验,计算结果优于基于传统的Smagorinsky涡粘性的动态亚格子模型。  相似文献   

7.
In the present study, two advanced detached eddy simulation (DES) approaches, shear-layer-adapted delayed DES and zonal DES in mode II, which are known to help transition from RANS to LES mode, are employed in various flow problems in conjunction with a high-order finite volume solver. The numerical scheme, being only applicable on structured grids, has low-dissipation and low-dispersion features. Such features benefit mostly in the LES mode, minimizing the interference of numerical diffusion with subgrid eddy viscosity. First, corresponding subgrid models are validated via decaying homogeneous turbulence benchmark case. Then, a channel flow problem is chosen to examine these models in attached flow situations. Finally, flow around an airfoil at low Reynolds number is solved using the shear-layer-adapted delayed DES approach only, in an aim to obtain trailing-edge noise spectrum at an observer location. Despite some log-layer mismatch over turbulent boundary layers, which is typical of most DES methods, the combined application of high-resolution numerical method and advanced DES approaches, which are implemented on a stabilized Spalart-Allmaras turbulence model, shows merit in resolution of turbulence in regions of interest.  相似文献   

8.
王涛  李平  柏劲松  汪兵  陶钢 《爆炸与冲击》2013,33(5):487-493
采用拉伸涡亚格子尺度应力模型对湍流输运中的亚格子作用项进行模式化处理,发展了适用于可压多介质黏性流动和湍流的大涡模拟方法和代码MVFT(multi-viscous flow and turbulence)。利用MVFT代码对低密度流体界面不稳定性及其诱发的湍流混合问题进行了数值模拟。详细分析了扰动界面的发展,流场中冲击波的传播、相互作用、湍流混合区边界的演化规律,以及流场瞬时密度和湍动能的分布和发展。数值模拟获得的界面演化图像和流场中波系结构与实验结果吻合较好。三维和二维模拟结果的比较显示,两者得到的扰动界面位置、波系及湍流混合区边界基本一致,只是后期的界面构型有所不同,这也正说明湍流具有强三维效应。  相似文献   

9.
We present an original timesaving joint RANS/LES approach to simulate turbulent premixed combustion. It is intended mainly for industrial applications where LES may not be practical. It is based on successive RANS/LES numerical modelling, where turbulent characteristics determined from RANS simulations are used in LES equations for estimation of the subgrid chemical source and viscosity. This approach has been developed using our TFC premixed combustion model, which is based on a generalization of the Kolmogorov’s ideas. We assume existence of small-scale statistically equilibrium structures not only of turbulence but also of the reaction zones. At the same time, non-equilibrium large-scale structures of reaction sheets and turbulent eddies are described statistically by model combustion and turbulence equations in RANS simulations or follow directly without modelling in LES. Assumption of small-scale equilibrium gives an opportunity to express the mean combustion rate (controlled by small-scale coupling of turbulence and chemistry) in the RANS and LES sub-problems in terms of integral or subgrid parameters of turbulence and the chemical time, i.e. the definition of the reaction rate is similar to that of the mean dissipation rate in turbulence models where it is expressed in terms of integral or subgrid turbulent parameters. Our approach therefore renders compatible the combustion and turbulent parts of the RANS and LES sub-problems and yields reasonable agreement between the RANS and averaged LES results. Combining RANS simulations of averaged fields with LES method (and especially coupled and acoustic codes) for simulation of corresponding nonstationary process (and unsteady combustion regimes) is a promising strategy for industrial applications. In this work we present results of simulations carried out employing the joint RANS/LES approach for three examples: High velocity premixed combustion in a channel, combustion in the shear flow behind an obstacle and the impinging flame (a premixed flame attached to an obstacle).  相似文献   

10.
A hybrid dynamic subgrid-scale model (HDSM) pertaining to Large-eddy simulation (LES) has been developed. The coefficient obtained by German dynamic Smagorinsky model (DSM) was integrated with a new dynamic coefficient, based on the dynamic subgrid characteristic length and controlled by the subgrid-scale (SGS) motions. In HDSM, the characteristic wave number determining the characteristic length of the dynamic subgrid is calculated from a new energy weighted mean method when the subgrid scale turbulent kinetic energy and the dissipation wave number are known. The dissipation wave-number is derived from the SGS turbulent kinetic energy spectrum equation. The total dissipation rate spectrum equation is based on the Pao energy spectrum and local equilibrium assumption. The dynamic subgrid characteristic length could take into account the rapidly fluctuating small scale behaviours and the spatial variation of turbulent characteristics. HDSM was used to simulate the fully developed channel and turbulent flow past a circular cylinder, and to determine the impact of the dam-break flow on downstream structure. The HDSM is robust in respect to anisotropic mesh and is less sensitive to grid resolution, and would accurately describe the energy transfer from large-scale to SGS fluctuations and capture more fluctuations of turbulence with same meshes compared to the DSM.  相似文献   

11.
In the current work, we present the development and application of an embedded large-eddy simulation (LES) - Reynolds-averaged Navier Stokes (RANS) solver. The novelty of the present work lies in fully embedding the LES region inside a global RANS region through an explicit coupling at the arbitrary mesh interfaces, exchanging flow and turbulence quantities. In particular, a digital filter method (DFM) extracting mean flow, turbulent kinetic energy and Reynolds stress profiles from the RANS region is used to provide meaningful turbulent fluctuations to the LES region. The framework is developed in the open-source computational fluid dynamics software OpenFOAM. The embedding approach is developed and validated by simulating a spatially developing turbulent channel flow. Thereafter, flow over a surface mounted spanwise-periodic vertical fence is simulated to demonstrate the importance of the DFM and the effect of the location of the RANS-LES interface. Mean and second-order statistics are compared with direct numerical simulation (DNS) data from the literature. Results indicate that feeding synthetic turbulence at the LES interface is essential to achieve good agreement for the mean flow quantities. However, in order to obtain a good match for the Reynolds stresses, the LES interface needs to be placed sufficiently far upstream, which in the present case was six spoiler heights before the fence. Further, a realistic spoiler configuration with finite-width in the spanwise direction and inclined at 30 degrees was simulated using the embedding approach. As opposed to the vertical fence case this is a genuinely (statistically) three-dimensional case and a very good match with mean and second-order statistics was obtained with the experimental data. Finally, in order to test the present solver for high sub-sonic speed flows the flow over an open cavity was simulated. A good match with reference data is obtained for mean and turbulence profile comparisons. Tones in the pressure spectra were predicted reasonably well and an overall sound pressure level with a maximum deviation of 2.6 d B was obtained with the present solver when compared with the experimental data.  相似文献   

12.
In this study a detached eddy simulation (DES) model, which belongs to the group of hybrid URANS/LES turbulence models, is used for the simulation of vortex shedding behind a triangular obstacle. In the near wall region or in regions where the grid resolution is not sufficiently fine to resolve smaller structures, the two-equation RANS shear-stress transport (SST) model is used. In the other regions with higher grid resolution a LES model, which uses a transport equation for the turbulent subgrid energy, is applied. The DES model is first investigated for two standard test cases, namely decaying homogeneous isotropic turbulence and the backward facing step, respectively. For the decaying homogeneous isotropic turbulence test case the evolution of the energy spectra in wavenumber space for different times are studied for both the DES and a Smagorinsky type LES model. Different grid resolutions are analyzed with a special emphasis on the modeling constant connecting the filter length scale to the grid size. The results are compared to experimental data. The backward facing step test case is used to study the model behavior for a case with a transition region between a RANS modeling approach close to the wall and LES based modeling in the intense shear flow region. The final application is the simulation of the vortex shedding behind a triangular obstacle. First, the influence of the inlet condition formulation is studied in detail as they can have a significant influence especially for LES based models. Detailed comparisons between simulation and experiment for the flow structure past the obstacle and statistical quantities such as the shedding frequency are shown. Finally the additional temporal and spatial information provided by the DES model is used to show the predicted anisotropy of turbulence.  相似文献   

13.
This work is concerned with the investigation of fluid-mechanical behaviour and the performance of different subgrid-scale models for LES in the numerical prediction of a confined axisymmetrical bluff-body flow. Four subgrid-scale turbulence models comprising the Smagorinsky model, Dynamic Smagorinsky model, WALE model and subgrid turbulent kinetic energy model, are validated and compared directly against the experimental data. Two different mesh counts are used for the LES studies, one with a higher mesh resolution in the shear layer than the other. It is found that increasing the mesh resolution improves the time-averaged fluctuating velocity profiles, but has less effect on the time-averaged filtered velocity profiles. A comparison against experiment shows that the recirculation zone length is well predicted using LES. The accuracy of the four different subgrid scale models is then assessed by comparing the LES results using the dense mesh with the experiment. Comparisons with the time-averaged axial and radial velocity profiles demonstrate that LES displays good agreement with the experimental data, with the essential flow features captured both qualitative and quantitatively. The subgrid velocity also matches well with the experimental results, but a slight underprediction of the inner shear layer is observed for all subgrid models. In general, it is found that the Smagorinsky and WALE models are more dissipative than the Dynamic Smagorinsky model and subgrid TKE model. Comparison of the spectra against the experiment shows that LES can capture dominant features of the turbulent flow with reasonable accuracy, and weak spectral peaks related to the Kevin-Helmholtz instability and helical vortex shedding are present.  相似文献   

14.
A Large Eddy Simulation (LES) of turbulent flow over an airfoil near stall is performed. Results of the LES are compared with those of Reynolds-Averaged Navier-Stokes (RANS) simulations using two well-known turbulence models, namely the Baldwin-Lomax model and the Spalart-Allmaras model. The subgrid scale model used for the LES is the filtered structure function model. All simulations are performed using the same structured multi-block code. In order to reduce the CPU time, an implicit time stepping method is used for the LES. The purpose of this study is to show the possibilities and limitations of LES of complex flows associated with aeronautical applications using state of the art simulation techniques. Typical flow features are captured by the LES such as the adverse-pressure gradient and flow retardation. Visualization of instantaneous flow fields shows the typical streaky structures in the near-wall region.  相似文献   

15.
植被层湍流的大涡模拟   总被引:8,自引:0,他引:8  
李家春  谢正桐 《力学学报》1999,31(4):406-415
研究植被层湍流的大涡模拟,发展了一个TSF(transientstructurefunction)亚格于模式,尽可能真实地处理植被湍流这种既有强剪切,又有热对流的流动.我们建立了植被湍流数据库,并进行了较为详细的分析研究.湍流统计量如平均风速剖面、雷诺应力、湍流脉动能等等,与有关观测结果作了对比,符合较好.大涡模拟计算同样发现已由现场观测到的、在强对流情况时出现的温度场斜坡型有组织结构.  相似文献   

16.
The paper is focused on the study of fully turbulent channel flows, using Large Eddy Simulations (LES), in order to address the effects of adverse pressure gradient regions. Analyses of the effects of streak instabilities, which have been shown to be relevant in such regions, are extended to moderate Reynolds numbers. The work considers two different channel geometries in order to further separate influences from wall curvature, flow separation and adverse pressure gradients. Turbulent kinetic energy and Reynolds stress budgets are investigated at separation and re-attachment points. The numerical approach used in the present work is based on the incompressible Navier–Stokes equations, which are solved by a pseudo-spectral methodology for structured grids. Wall-resolved LES calculations are performed using the WALE subgrid scale model. The study shows that the streak instability mechanism persists at higher Reynolds numbers with and without wall curvature in the adverse pressure gradient regions. Moreover, the observed effects are also present regardless of the existence of flow separation regions. Finally, the study of turbulent kinetic energy budgets indicates that, independently of the flow condition, there are well-defined patterns for such turbulent properties at separation and re-attachment points.  相似文献   

17.
Large-eddy simulations (LES) of a vertical turbulent channel flow laden with a very large number of solid particles are performed. The motivation for this research is to get insight into fundamental aspects of co-current turbulent gas-particle flows, as encountered in riser reactors. The particle volume fraction equals about 1.3%, which is relatively high in the context of modern LES of two-phase flows. The channel flow simulations are based on large-eddy approximations of the compressible Navier–Stokes equations in a porous medium. The Euler–Lagrangian method is adopted, which means that for each individual particle an equation of motion is solved. The method incorporates four-way coupling, i.e., both the particle-fluid and particle–particle interactions are taken into account. The results are compared to single-phase channel flow in order to investigate the effect of the particles on turbulent statistics. The present results show that due to particle–fluid interactions the mean fluid profile is flattened and the boundary layer is thinner. Compared to single-phase turbulent flow, the streamwise turbulence intensity of the gas phase is increased, while the normal and spanwise turbulence intensities are reduced. This finding is generally consistent with existing experimental data. The four-way coupled simulations are also compared with two-way coupled simulations, in which the inelastic collisions between particles are neglected. The latter comparison clearly demonstrates that the collisions have a large influence on the main statistics of both phases. In addition, the four-way coupled simulations contain stronger coherent particle structures. It is thus essential to include the particle–particle interactions in numerical simulations of two-phase flow with volume fractions around one percent.  相似文献   

18.
An unsteady incompressible Navier–Stokes solver that uses a dual time stepping method combined with spatially high‐order‐accurate finite differences, is developed for large eddy simulation (LES) of turbulent flows. The present solver uses a primitive variable formulation that is based on the artificial compressibility method and various convergence–acceleration techniques are incorporated to efficiently simulate unsteady flows. A localized dynamic subgrid model, which is formulated using the subgrid kinetic energy, is employed for subgrid turbulence modeling. To evaluate the accuracy and the efficiency of the new solver, a posteriori tests for various turbulent flows are carried out and the resulting turbulence statistics are compared with existing experimental and direct numerical simulation (DNS) data. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
The accuracy of point-particle models with two-way coupling for particles of Kolmogorov-length-scale size is assessed. Turbulent kinetic energy budgets are analyzed in physical and in spectral space. It is shown that the force projection of the two-way coupling consistently models the direct transfer of kinetic energy on the particle surfaces and the enhanced viscous dissipation in the vicinity of the particles. Direct and large-eddy simulations of particle-laden flows in isotropic decaying turbulence are conducted and compared with direct-particle fluid simulations, where the particle-fluid interaction is fully resolved. An analysis in spectral space shows that turbulence modulation by particles mainly occurs at larger scales, although the momentum transfer takes place at the smallest scales. Therefore, the turbulent kinetic energy cascade of the single phase dominates in particle-laden flows. It is shown that point-particle models do not interfere with subgrid scale models, which usually act on the smallest scale. Consequently, point-particle models predict sufficiently accurate the turbulence modulation in direct numerical simulations and even when a subgrid scale model is used. The resolution of the LES does not affect the accuracy of the point-particle model, when the subgrid kinetic energy is negligible.  相似文献   

20.
在可压缩多介质粘性流体动力学高精度计算方法MVPPM(multi-viscous-fluid piecewise parabolicmethod)基础上,引入Smagorinsky和Vreman亚格子湍流模型,采用大涡数值模拟方法求解可压缩粘性流体NS(Navier-Stokes)方程,给出适用于可压缩多介质流体界面不稳定性发展演化至湍流阶段的计算方法和二维计算程序MVFT(multi-viscosity-fluid and turbulence)。在2种亚格子湍流模型下计算了LANL(Los Ala-mos National Laboratory)激波管单气柱RM不稳定性实验,分析了气柱的形状、流场速度以及涡的特征,通过与LANL实验和计算结果的比较可知,Vreman模型略优于Smagorinsky模型,MVFT方法和计算程序可用于对界面不稳定性发展演化至湍流阶段的数值模拟。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号