首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The boundary-value problem for calculation of differential absorption of thermal radiation is formulated based on the modified DP0 approximation. The solution of this problem is supplemented by simple analytical approximations for the normalised absorbed radiation power. The latter is used together with the analytical approximation for the efficiency factor of absorption, suggested earlier. The resulting simplified model is applied to the specific problem of absorption of thermal radiation by a diesel fuel droplet. Two types of diesel fuel have been considered. It is pointed out that the radial distribution of absorbed thermal radiation power is non-monotonic. The power absorbed in the droplet core is shown to be rather large and almost homogeneous. Also, the absorbed power is large in the vicinity of the droplet surface, but is minimal in the intermediate region. It is pointed out that the variations of the refractive index of diesel fuel with wavelengths can smooth the predicted radial dependence of the thermal radiation power, absorbed in diesel fuel droplets.  相似文献   

2.
A numerical study of the heat and mass transfer from an evaporating fuel droplet in oscillatory flow was performed. The flow was assumed to be laminar and axisymmetric, and the droplet was assumed to maintain its spherical shape during its lifetime. Based on these assumptions, the conservation equations in a general curvilinear coordinate were solved numerically. The behaviors of droplet evaporation in the oscillatory flow were investigated by analyzing the effects of flow oscillation on the evaporation process of a n-heptane fuel droplet at high pressure.The response of the time history of the square of droplet diameter and space-averaged Nusselt numbers to the main flow oscillation were investigated in frequency band of 1–75 Hz with various oscillation amplitudes. Results showed that, depending on the frequency and amplitude of the oscillation, there are different modes of response of the evaporation process to the flow oscillation. One response mode is synchronous with the main flow oscillation, and thus the quasi-steady condition is attained. Another mode is asynchronous with the flow oscillation and is highly unsteady. As for the evaporation rate, however, in all conditions is more greatly enhanced in oscillatory flow than in quiescent air.To quantify the conditions of the transition from quasi-steady to unsteady, the response of the boundary layer around the droplet surface to the flow oscillation was investigated. The results led to including the oscillation Strouhal number as a criteria for the transition. The numerical results showed that at a low Strouhal number, a quasi-steady boundary layer is formed in response to the flow oscillation, whereas by increasing the oscillation Strouhal number, the phenomena become unsteady.  相似文献   

3.
Evaporation of sessile water droplet on polydimethylsiloxane (PDMS) surfaces with three different curing ratios (5:1, 10:1, and 20:1) was experimentally investigated in this paper. We show that the constant contact radius (CCR) evaporation on surface with high curing ratio lasts longer than that with low curing ratio. We also measured Young's moduli of PDMS films by using atomic force microscopy (AFM) and simulated surface deformation of PDMS films induced by sessile water droplet. With increasing curing ratio of PDMS film, Young's modulus of PDMS film is getting lower, and then there will be larger surface deformation and more elastic stored energy. Since such energy acts as a barrier to keep the three-phase contact line pinned, thus it will result in longer CCR evaporation on PDMS surface with higher curing ratio.  相似文献   

4.
The d2-law validity during n-decane droplet vaporization in microgravity environment is examined experimentally. Two sets of experiments are performed, under normal and microgravity, in stagnant hot atmospheric environment. The environment temperature is varied in the range up to 967 K. The droplet is suspended onto the cross point of two micro-fibers of 14 μm in diameter. This technique enables to greatly minimize the effect of fiber on droplet heat and mass transfer. The results show that, for ambient temperatures below approximately 950 K, departure from the d2-law is observed during droplet vaporization in microgravity environment. In addition, the droplet lifetime is longer in microgravity than in normal gravity under the same ambient test conditions. However, for temperatures exceeding approximately 950 K, the experimental results demonstrate that the d2-law holds throughout the entire droplet lifetime, and the mass transfer rate is identical in both microgravity and normal gravity environments.  相似文献   

5.
Heating of a droplet on a stretchable hydrophilic surface is investigated and fluid dynamics in the droplet under the heating load is assessed. Elastomer wafers are considered as the sample material and the fixture is designed and manufactured to assure uniform stretching of the droplet located elastomer surface. Droplet adhesion and possible slipping/sliding of the droplet are evaluated during stretching of the sample surface. Numerical simulations are carried out to predict thermal and flow response of the droplet fluid before and after stretching. The effect of droplet volume on heating enhancement is also included in the numerical simulations. Experiments are carried out using a high-speed recording system towards comparing the flow predictions. Findings reveal that predictions are in agreement with their counterparts of experiments. Stretching of sample surface increases wetting area and lowers height of the droplet while influencing thermal flow structures in the fluid. The Nusselt and the Bond numbers increase with enlarging stretching, which becomes more visible for large droplet volume (80 µl). Hence, stretching corresponding to 80% extension of elastomer surface gives rise to 60% improvement in the Nusselt number.  相似文献   

6.
V. I. Zhuk 《Fluid Dynamics》1976,11(2):251-255
The problem of the evaporation of a spherical particle is solved by a numerical finnite-difference method for the stationary and nonstationary cases on the basis of the generalized Krook kinetic equation [1]. Evaporation into a vacuum and into a flooded space are considered taking into account the reduction in size and cooling of the droplet. The minimum mass outflow is determined for stationary evaporation into a vacuum at small Knudsen numbers. The results are compared with those of other authors for both the spherical and plane problems. Most previous studies have used different approximations which reduce either to linearizing the problem [2, 3] or to use of the Hertz-Knudsen equation [4]. The inaccurate procedure of matching free molecular and diffusive flows at some distance from the surface of the droplet [5] is completely unsuitable in the absence of a neutral gas. Equations for the rate of growth of a droplet in a slightly supercooled vapor were obtained in [6] from a solution of the ellipsoidal kinetic model by the method of (expansion of) moments.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 97–102, March–April, 1976.  相似文献   

7.
A family of robust stretch-dominated bimaterial lattices is introduced which combines low (or zero) thermal expansion with high stiffness, structural robustness over wide temperature ranges and manufacturing facility. This combination of properties is unavailable through any other material solution. The concept uses two constituents configured as adjoining sub-lattices. It accommodates the thermal expansion through rotation of the members of one sub-lattice. Moreover, the lattice exhibits large stiffness to weight because it is fully triangulated and does not rely on rotational resistance at the joints for structural rigidity. A wide range of constituents can be used to build the new lattices enabling many desirable properties to be incorporated, especially high strength and toughness. Examples of both planar and volumetric lattices are presented, and their thermo-mechanical properties derived. The results are verified by conducting experiments and finite element simulations on a lattice fabricated using aluminium and titanium alloy constituents.  相似文献   

8.
A numerical study of heat and mass transfer from an evaporating fuel droplet rotating around its vertical axis was performed in forced convection only on the side opposite to the flow. The flow was assumed to be laminar, and the droplet was assumed to maintain its spherical shape during its lifetime. Based on the abovementioned assumption, the conservation equations in a general curvilinear coordinate were solved numerically. The behavior of rotating droplet evaporation in the forced convection flow can be investigated by analyzing the effects of the rotation of the droplet on the evaporation process of multi-component hydrocarbons droplet. The droplet is simulated to behave as a hard sphere. The transfer equations are discretized using an implicit finite difference method. Thomas algorithm is used to solve the system of algebraic equations. Moreover, dimensionless parameters of heat and mass transfer phenomena around a rotating hydrocarbon droplet were determined. The thickness of the boundary layer is unknown for this model and therefore, it was determined in function of time. Additionally, the study concerns “Dgheim dimensionless number” which is the ratio of the rotation forces over the viscosity forces. Dgheim dimensionless number is correlated to Nusselt and Sherwood numbers for multi-component hydrocarbon droplets in evaporation by taking into account the effect of heat and mass Spalding, Prandtl and Schmidt numbers respectively. Also, correlations for Nusselt and Sherwood numbers in terms of Reynolds, Prandtl and Schmidt numbers are proposed. These correlations consider the rotation phenomenon and advance the variation of the thermophysical and transport properties in the vapor phase of multi-component blends.  相似文献   

9.
The unexpected thermal distortions and failures in engineering raise the big concern about thermal expansion controlling. Thus, design of tailorable coefficient of thermal expansion (CTE) is urgently needed for the materials used in large temperature variation circumstance. Here, inspired by multi-fold rotational symmetry in crystallography, we have devised six kinds of periodic planar lattices, which incorporate tailorable CTE and high specific biaxial stiffness. Fabrication process, which overcame shortcomings of welding or adhesion connection, was developed for the dual-material planar lattices. The analytical predictions agreed well with the CTE measurements. It is shown that the planar lattices fabricated from positive CTE constituents, can give large positive, near zero and even negative CTEs. Furthermore, a generalized stationary node method was proposed for aperiodic lattices and even arbitrary structures with desirable thermal expansion. As an example, aperiodic quasicrystal lattices were designed and exhibited zero thermal expansion property. The proposed method for the lattices of lightweight, robust stiffness, strength and tailorable thermal expansion is useful in the engineering applications.  相似文献   

10.
The ability to accurately predict droplet entrainment in annular two-phase flow is required to effectively calculate the interfacial mass, momentum, and energy transfer, which characterizes nuclear reactor safety, system design, analysis, and performance. Most annular flow entrainment models in the open literature are formulated in terms of dimensionless groups, which do not directly account for interfacial instabilities. However, many researchers agree that there is a clear presence of interfacial instability phenomena having a direct impact on droplet entrainment. The present study proposes a model for droplet entrainment, based on the underlying physics of droplet entrainment from upward co-current annular film flow that is characteristic to light water reactor safety analysis. The model is developed based on a force balance and stability analysis that can be implemented into a transient three-field (continuous liquid, droplet, and vapor) two-phase heat transfer and fluid flow systems analysis computer code.  相似文献   

11.
In this paper the constitutive equation of no-tension materials is generalized in order to account for thermal dilatation. Subsequently, the explicit solution to the equilibrium problem of a circular ring subjected to two uniform radial pressures, p 1 and p 2, acting respectively on the inner and outer boundary and a temperature distribution depending linearly on the radius, is calculated. It is proven that if pressures p 1 and p 2 and the temperatures V 1 and V 2 of the inner and outer boundary, respectively, satisfy certain inequalities, then the well-known stress field corresponding to a linear elastic material is the solution for the non-linear elastic material under consideration. On the contrary, if these inequalities are not satisfied, the equilibrated stress field, negative semi-definite, is explicitly calculated and the corresponding displacement and fractures determined. In particular the dependence of the cracked regions on the temperatures V 1 and V 2 is analysed.
Sommario In questo lavoro si generalizza l'equazione costitutiva dei materiali non resistenti a trazione, per tenere conto delle dilatazioni termiche. Successivamente si calcola la soluzione esplicita del problema di equilibrio di una corona circolare costituita da un materiale non resistente a trazione, soggetta a due pressioni radiali uniformi, p 1 e p 2, agenti rispettivamente sul bordo interno e sul bordo esterno e a una distribuzione di temperatura variabile linearmente col raggio. Si dimostra che se le pressini p 1 e p 2 e le temperature V 1 e V 2 rispettivamente del bordo interno ed esterno soddisfano alcune diseguaglianze, allora il noto campo di sforzo corrispondente ad un materiale elastico lineare è anche la soluzione per il materiale elastico non lineare qui considerato. Al contrario, se queste diseguaglianze non sono soddisfatte, lo stato di sforzo equilibrato e semidefinito negativo è calcolato esplicitamente e sono determinati i corrispondenti spostamenti e fratture. In particolare, viene analizzata la dipendenza della regione fratturata dalle temperature V 1 e V 2.
  相似文献   

12.
This letter is concerned with the plane and axisymmetric stagnation-point flows and heat transfer of an electrically-conducting fluid past a stretching sheet in the presence of the thermal radiation and heat generation or absorption. The analytical solutions for the velocity distribution and dimensionless temperature profiles are obtained for the various values of the ratio of free stream velocity and stretching velocity, heat source parameter, Prandtl number, thermal radiation parameter, the suction and injection velocity parameter and magnetic parameter and dimensionality index in the series form with the help of homotopy analysis method (HAM). Convergence of the series is explicitly discussed. In addition, shear stress and heat flux at the surface are calculated.  相似文献   

13.
The droplet dynamics passing through a cylinder obstruction was investigated with direct numerical simulations with FE-FTM (Finite Element-Front Tracking Method). The effect of droplet size and capillary number (Ca) was studied for both Newtonian and viscoelastic fluids. In the case of Newtonian droplet immersed in Newtonian medium, the droplet breakup induced by the geometric hindrance depends on the droplet size. As Ca increases, the short droplets (1.3 times longer than the channel width) break up while passing through the obstruction. However, the breakup does not occur for longer droplets (1.8 times longer than the channel width). When the viscoelastic fluid characterized by the Oldroyd-B model is considered, the Newtonian droplet immersed in viscoelastic medium breaks up into two smaller droplets while passing through the cylinder obstruction with increasing Dem (Deborah number of the medium). We also show that the normal stress difference plays a key role on the droplet breakup and the droplet extension. The normal stress difference is enhanced in the negative wake region due to the droplet flow, which also promotes droplet extension in that region. This numerical study provides information not only on underlying physics of the droplet flows passing through a cylinder obstruction but also on the useful guidelines for microfluidic applications.  相似文献   

14.
A modified shear-lag analysis, taking into account the concept of stress perturbation function, is developed and applied to evaluate the effect of transverse cracks on the effective thermal expansion coefficient of aged angle-ply composites laminates. Effects of number of 90° layers and number of θ° layers in the outer angle-ply laminates on the reduction of the effective axial coefficient of thermal expansion have also been studied. The results of this paper represent well the dependence of the reduction of the effective axial coefficient of thermal expansion on the hygrothermal conditions, the fibre orientation angle of the outer layers, the number of cracked cross-ply layers and the number of un-cracked outer θ° layers in laminate.  相似文献   

15.
A notable universal relationship has been proposed in the literature for the evolution of dimensionless droplet height and wetting diameter during the initial spreading stage of droplet impingement. In this study, this universal relationship was investigated by employing three sets of measurements. Sequential images were recorded, and the whole droplet profile ensembles were plotted to facilitate this study. These sets of experiments were designed by changing impact velocity, surface hydrophobicity, or solution property. The experimental results illustrate that the importance of parameters causing the data variation is in the order of surface hydrophobicity > initial impact velocity > surfactant on wetting diameter, and surface hydrophobicity ≈ initial impact velocity > surfactant on droplet height. No universal relationship was observed for dimensionless droplet height and wetting diameter.  相似文献   

16.
Dispersed water droplets are often seen in environmental air flows in rain, cloud, mist, sea spray and so on. It is therefore of great importance to precisely estimate heat transfer between water droplets and atmospheric air in developing a reliable climate model. The purpose of this study is to fabricate the measurement system for the temperature of a small water droplet in air flow under the controlled relative humidity condition and to investigate the effect of relative humidity on heat transfer across the surface of an evaporating water droplet in air flow. The results show that the droplet temperature decreases in the low-relative-humidity condition, whereas it increases in the high-relative-humidity condition. Nusselt number on the droplet surface is not affected by the relative humidity.  相似文献   

17.
Transient sub-critical droplet evaporation in non-isothermal stagnant gaseous mixtures taking into account the effects of radiation, liquid volumetric expansion and droplet heating is investigated numerically. We obtained equations for Stefan velocity and the rate of change of the droplet radius taking into account liquid volumetric expansion, and derived the boundary conditions taking into account the effect of liquid thermal expansion. It is shown that in the case of sub-critical evaporation neglecting the liquid volumetric expansion causes underestimation of the evaporation rate at the initial stage and overestimation of the evaporation rate at the final stage of droplet evaporation.
T. ElperinEmail:
  相似文献   

18.
This paper discusses pressure variation on a wall during the process of liquid flow and droplet formation in a T-junction microchannel. Relevant pressure in the chan-nel, deformation of the elastic wall, and responses of the droplet generation are analyzed using a numerical method. The pressure difference between the continuous and dis-persed phases can indicate the droplet-generation period. The pressure along the channel of the droplet flow is affected by the position of droplets, droplet-generation period, and droplet escape from the outlet. The varying pressures along the channel cause a nonuniform deformation of the wall when they are elastic. The deformation is a vibration and has the same period as the droplet generation arising from the process of droplet formation.  相似文献   

19.
基于细观力学方法的混凝土热膨胀系数预测   总被引:2,自引:0,他引:2  
建立混凝土材料的有效性质与微结构参数之间的关系,是混凝土材料优化设计的基础。本文用细观力学方法对复合材料宏观有效热膨胀系数进行研究,得到了含有一球形夹杂物的无限大介质在均匀变温作用下的应力场。假定混凝土为由骨料和砂浆基质组成的二相复合材料,根据混凝土宏观体积热膨胀量与组成混凝土的各相介质细观体积热膨胀量相等的原则,采用基于Mori-Tanaka方法的混凝土宏观有效剪切模量,推导出混凝土有效热膨胀系数的解答。对稀疏解法、自洽方法和有限单元数值试验结果的比较说明,本文提出的基于自洽方法的混凝土宏观有效热膨胀系数的理论公式能够较好的描述混凝土的热学特性,该方法可以推广到多相复合材料宏观有效热膨胀系数的预测中。  相似文献   

20.
A simple entrainment model is used to estimate droplet streamlines, velocity and mass flux in rocket exhaust plumes. Since droplet mass flux constitutes only about 1% of the exhaust mass flux, the effect of droplet entrainment on the gas flow is neglected. The novelty of the present model is in obtaining the droplet distribution within the nozzle by assuming a small radial random velocity component for droplets at the throat. Gas flow in the nozzle is approximated as isentropic plus a correction for the boundary layer. The computed distribution of droplet mass flux is found to be in good agreement with experimental data. Received 15 January 1996 / Accepted 11 September 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号