首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Turbulent droplet-laden flow downstream of a sudden pipe expansion is numerically studied using an Eulerian two-fluid model. The model is used to investigate the effect of droplet evaporation on the particle dispersion and on the gas phase turbulence modification. Turbulence suppression in the case of evaporating droplets is hardly observed near the wall, and the level of turbulence tends to the corresponding value for the single-phase flow regime. In the flow core, where evaporation is insignificant, a decrease in the level of gas turbulence (to 20 % as compared to a single-phase flow) can be observed. The maximal effect of droplet evaporation is obtained in the wall region of the tube. A considerable increase in the maximal value of heat exchange on adding the evaporating droplets to the separated flow is shown (more than 1.5-fold as compared to the single-phase flow at a small value of droplet mass concentration of M L1≤ 0.05). The addition of the solid non-evaporating particles causes a slight increase in the maximum value of heat transfer in the case of small particles and a decrease in heat transfer in the case of large particles.  相似文献   

2.
The results of mathematical modeling of the evolution of unsteady shock waves in two-phase mixtures of inert gas, vapor and suspended liquid droplets with allowance for dynamic, thermal and mass phase interaction processes are presented. The influence of interphase mass transfer effects (droplet breakdown and evaporation, vapor condensation) on the structure of unsteady shock waves in vapor-gas-droplet mixtures is analyzed. The important influence of phase mass transfer and, in particular, droplet breakdown as a result of surface layer stripping by the gas flow on the distribution of the parameters of the carrier and dispersed components of the mixture behind the shock front is demonstrated. The effect of the principal governing parameters of the two-phase mixture on the unsteady shock wave propagation process is analyzed.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.4, pp. 67–75, July–August, 1992.  相似文献   

3.
为探究煤油液滴不同初始直径对气液两相旋转爆轰发动机流场的影响,假设初始注入的煤油液滴具有均匀直径,考虑雾化破碎、蒸发等过程,建立了非定常两相爆轰的Eulerian-Lagrangian模型,进行了液态煤油/高温空气爆轰的非预混二维数值模拟。结果表明:在初始液滴直径为1~70μm的工况范围,燃烧室内均形成了单个稳定传播的旋转爆轰波;全局当量比为1时,爆轰波前的空气区域大于液滴煤油的蒸气区域,导致波前燃料空气混合不均匀,波前均存在富油区和贫油区,两相速度差导致分离出的空气形成低温条带;当煤油液滴的初始直径较小时,波前的反应物混合过程主要受蒸发的影响,爆轰波可稳定传播;当直径减小至1μm时,煤油液滴在入口处即蒸发,旋转爆轰波表现为气相传播的特性,爆轰波结构平整;当煤油液滴的初始直径较大时,波前的反应物混合过程主要受液滴破碎的影响;对于相同的燃料质量流量,在不同初始煤油液滴直径工况下,煤油液滴最大的停留时间均占爆轰波传播时间尺度的80%以上;爆轰波前燃料预蒸发为气相的占比越高,爆轰波的传播速度越高;初始液滴直径为10~70μm的工况范围内,爆轰波的速度随初始直径的增大先升高后降低。  相似文献   

4.
5.
A numerical study of the heat and mass transfer from an evaporating fuel droplet in oscillatory flow was performed. The flow was assumed to be laminar and axisymmetric, and the droplet was assumed to maintain its spherical shape during its lifetime. Based on these assumptions, the conservation equations in a general curvilinear coordinate were solved numerically. The behaviors of droplet evaporation in the oscillatory flow were investigated by analyzing the effects of flow oscillation on the evaporation process of a n-heptane fuel droplet at high pressure.The response of the time history of the square of droplet diameter and space-averaged Nusselt numbers to the main flow oscillation were investigated in frequency band of 1–75 Hz with various oscillation amplitudes. Results showed that, depending on the frequency and amplitude of the oscillation, there are different modes of response of the evaporation process to the flow oscillation. One response mode is synchronous with the main flow oscillation, and thus the quasi-steady condition is attained. Another mode is asynchronous with the flow oscillation and is highly unsteady. As for the evaporation rate, however, in all conditions is more greatly enhanced in oscillatory flow than in quiescent air.To quantify the conditions of the transition from quasi-steady to unsteady, the response of the boundary layer around the droplet surface to the flow oscillation was investigated. The results led to including the oscillation Strouhal number as a criteria for the transition. The numerical results showed that at a low Strouhal number, a quasi-steady boundary layer is formed in response to the flow oscillation, whereas by increasing the oscillation Strouhal number, the phenomena become unsteady.  相似文献   

6.
A model is presented for the droplet evaporation process induced by a shock wave propagating in a fog. The model is based on the existence of a quasi-steady wet bulb state of the droplets during evaporation. It is shown that for moderate shock strength, Ma = < 2, and droplet radii in the range of 1–5 the, the major part of the evaporation process is governed by a balance between heat conduction and vapour diffusion. The formation of a fog by means of an unsteady adiabatic expansion of humid nitrogen is described. Experimental results of shock induced evaporation are shown for shock Mach numbers from 1.2 to 2.1, droplet mass fraction of 5 · 10-3, and initial droplet radii of 1–1.4 m. The expected linear relation between droplet radius squared and time during evaporation is observed. Characteristic evaporation times appear to be strongly dependent on shock strength. A variation of about two decades, predicted by theory, was experimentally observed for the Mach number range studied.  相似文献   

7.
This study compares experimental measurements and numerical simulations of liquid droplets over heated (to a near surface temperature of 423 K) and unheated cylinders. The numerical model is based on an unsteady Reynolds-averaged Navier–Stokes (RANS) formulation using a stochastic separated flow (SSF) approach for the droplets that includes submodels for droplet dispersion, heat and mass transfer, and impact on a solid surface. The details of the droplet impact model are presented and the model is used to simulate water spray impingement on a cylinder. Computational results are compared with experimental measurements using phase Doppler interferometry (PDI). Overall, good agreement is observed between predictions and experimental measurements of droplet mean size and velocity downstream of the cylinder.  相似文献   

8.
An experimental investigation was conducted to quantify the unsteady heat transfer and phase changing process within small icing water droplets in order to elucidate underlying physics to improve our understanding of the important micro-physical process of icing phenomena. A novel, lifetime-based molecular tagging thermometry (MTT) technique was developed and implemented to achieve temporally-and-spatially resolved temperature distribution measurements to reveal the time evolution of the unsteady heat transfer and dynamic phase changing process within micro-sized water droplets in the course of icing process. It was found that, after a water droplet impinged onto a frozen cold surface, the liquid water at the bottom of the droplet would be frozen and turned to solid ice rapidly, while the upper portion of the droplet was still in liquid state. As the time goes by, the interface between the liquid phase water and solid phase ice was found to move upward continuously with more and more liquid water within the droplet turned to solid ice. Interestingly, the averaged temperature of the remaining liquid water within the small icing droplet was found to increase, rather than decrease, continuously in the course of icing process. The temperature increase of the remaining liquid water is believed to be due to the heat release of the latent heat during solidification process. The volume expansion of the water droplet during the icing process was found to be mainly upward to cause droplet height growth rather than radial to enlarge the contact area of the droplet on the test plate. As a result, the spherical-cap-shaped water droplet was found to turn to a prolate-spheroid-shaped ice crystal with cusp-like top at the end of the icing process. The required freezing time for the water droplets to turn to ice crystals completely was found to depend on the surface temperature of the test plate strongly, which would decrease exponentially as the surface temperature of the frozen cold test plate decreases.  相似文献   

9.
The structure of the relaxation zone behind a shock wave of moderate strength in a mixture of gas, vapour and droplets is analysed. A model is presented for shock induced evaporation, which is based on wet-bulb equilibrium and on the absence of relative motion between droplets and gas. Experimental and numerical data on heterogeneous condensation induced by an unsteady rarefaction wave and on re-evaporation due to shock wave passage are reported for a mixture of water vapour, nitrogen gas and condensation nuclei. Pressure, temperature, saturation ratio and droplet size are experimentally obtained and are very well predicted by a numerical simulation based on the non-linear quasisteady wet-bulb model for phase transition, as well for the expansion wave as for the shock wave. During expansion, droplet number density decays much faster than predicted, which is not yet satisfactorily explained. Shock induced droplet evaporation is studied for post-shock saturation ratios ranging from 5×10–3 to 0.2, corresponding to shock Mach numbers of 1.2 to 1.9. The evaporation times are well predicted by the theoretical model. No evidence is found for droplet break-up for Weber numbers up to 13, and droplet radii of the order of 1m.On leave at Institute of Fluid Science, Shock Wave Research Center, Tohoku University, Sendai 980, JapanThis article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

10.
 This paper presents the results of an experimental investigation, of the effect of radiation heat, on the evaporation of five droplet sizes of pure water, softly deposited on porous and non-porous ceramic solids, at temperature ranging from 75 to 250 °C. Both solids were instrumented with several surface and in-depth thermocouples, and had the same thermal properties. Results show that, the droplet evaporation time, and the surface recovery time for the porous solid were shorter than that of non-porous solid for the same droplet size under identical conditions. Also, smaller droplets were more efficient for cooling both solids. The results were compared with data for the evaporation of water droplets on similar ceramic solids heated from bottom (Abu-Zaid M; Atreya A (1994) J Heat Transfer 116: 694–701). The comparison shows that, the heat radiation has a significant effect of reducing evaporation time, recovery time, and droplet volume of influence for both solids, at the same initial surface temperature. Received on 6 December 1999 / Published online: 29 November 2001  相似文献   

11.
A numerical study of heat and mass transfer from an evaporating fuel droplet rotating around its vertical axis was performed in forced convection only on the side opposite to the flow. The flow was assumed to be laminar, and the droplet was assumed to maintain its spherical shape during its lifetime. Based on the abovementioned assumption, the conservation equations in a general curvilinear coordinate were solved numerically. The behavior of rotating droplet evaporation in the forced convection flow can be investigated by analyzing the effects of the rotation of the droplet on the evaporation process of multi-component hydrocarbons droplet. The droplet is simulated to behave as a hard sphere. The transfer equations are discretized using an implicit finite difference method. Thomas algorithm is used to solve the system of algebraic equations. Moreover, dimensionless parameters of heat and mass transfer phenomena around a rotating hydrocarbon droplet were determined. The thickness of the boundary layer is unknown for this model and therefore, it was determined in function of time. Additionally, the study concerns “Dgheim dimensionless number” which is the ratio of the rotation forces over the viscosity forces. Dgheim dimensionless number is correlated to Nusselt and Sherwood numbers for multi-component hydrocarbon droplets in evaporation by taking into account the effect of heat and mass Spalding, Prandtl and Schmidt numbers respectively. Also, correlations for Nusselt and Sherwood numbers in terms of Reynolds, Prandtl and Schmidt numbers are proposed. These correlations consider the rotation phenomenon and advance the variation of the thermophysical and transport properties in the vapor phase of multi-component blends.  相似文献   

12.
In the present paper an unsteady thermal flow of non-Newtonian fluid is investigated which is of the fiow into axisymmetric mould cavity. In the second part an unsteady thermal flow of upper-convected Maxwell fluid is studied, For the flow into mould cavity the constitutive equation of power-law fluid is used as a rheological model of polymer fluid. The apparent viscosity is considered as a function of shear rate and temperature. A characteristic viscosity is introduced in order to avoid the nonlinearity due to the temperature dependence of the apparent viscosity. As the viscosity of the fluid is relatively high the flow of the thermal fluid can be considered as a flow of fully developed velocity field. However, the temperature field of the fluid fiow is considered as an unsteady one. The governing equations are constitutive equation, momentum equation of steady flow and energy conservation equation of non-steady form. The present system of equations has been solved numerically by the splitting differen  相似文献   

13.
Narrow channel heat transfer technique is a new developing heat transfer technique in recent years. As the temperature of droplet, steam and wall are decided by forced convection heat transfer between the steam and the wall, between the droplet and the wall, between the steam and the droplet and radiation heat transfer, which makes heat transfer mechanism of dispersed flow be difficultly interpretative. Dispersed flow in narrow annular channel is analyzed in the paper, investigating the influence of all kinds of heat transfer processes on dispersed flow, building annular channel dispersed flow model using thermodynamic non-equilibrium model. Calculation results show heat transfer is mainly controlled by heat transfer process between steam and wall. When temperature is low, radiation can be ignored on heat transfer coefficient calculation. The calculation of model can provide a reference for engineering application of steam generator, refrigeration system and so on.  相似文献   

14.
The motion and heat and mass transfer of particles of a disperse admixture in nonisothermal jets of a gas and a low-temperature plasma are simulated with allowance for the migration mechanism of particle motion actuated by the turbophoresis force and the influence of turbulent fluctuations of the jet flow velocity on heat and mass transfer of the particle. The temperature distribution inside the particle at each time step is found by solving the equation of unsteady heat conduction. The laws of scattering of the admixture and the laws of melting and evaporation of an individual particle are studied, depending on the injection velocity and on the method of particle insertion into the jet flow. The calculated results are compared with data obtained with ignored influence of turbulent fluctuations on the motion and heat and mass transfer of the disperse phase. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 3, pp. 95–108, May–June, 2008.  相似文献   

15.
A theoretical model is developed in the present study to simulate droplet motion and the evolution of droplet size distribution (DSD) in two-phase air/dispersed water spray flows. The model takes into account several processes which influence DSD and droplet trajectory: droplet collision and coalescence, evaporation and cooling, gravitational settling, and turbulent dispersion of dispersed phase. The DSDs determined by the model at different locations in a two-phase flow are evaluated by comparing them to experimental observations obtained in an icing wind tunnel. The satisfactory coincidence between simulation and experimental results proves that the model is reliable when modeling two-phase flows under icing conditions. The model is applied for two particular examples in which the modification of DSD is calculated in two-phase flows under conditions describing in-cloud icing and freezing drizzle.  相似文献   

16.
The present paper studies unsteady temperature fields in growing bodies of spherical shape. The growth occurs due to constant accretion of layers of constant thickness on the surface of the main body. In the general case, the temperature of the accreted material is different from that of the main body, which causes a heat flow on the accretion surface. The solution of the initial boundary-value problem of heat conduction is sought as an expansion in the complete system of eigenfunctions of the differential operator generated by the problem.  相似文献   

17.
A calculation model was developed, and the heat– and mass–transfer characteristics in a laminar air—vapor—droplet flow moving in a round tube were studied numerically. The distributions of parameters of the two–phase flow over the tube radius were obtained for varied initial concentrations of the gas phase. The calculated heat and mass transfer is compared to experimental data and calculations of other authors. It is shown that evaporation of droplets in a vapor—gas flow leads to a more intense heat release as compared to a one–species vapor—droplet flow and one–phase vapor flow  相似文献   

18.
A polynomial expansion procedure and an analytical discrete-ordinates method are used to solve four basic problems, all based on the linearized Boltzmann equation for rigid-sphere interactions, that describe heat transfer and/or evaporation–condensation between two parallel surfaces or for the case of a semi-infinite half space. Relevant to the case of two surfaces, the basic problem of heat transfer driven by a temperature difference at two confining walls described by a general Maxwell gas–surface interaction law (a mixture of specular and diffuse reflection) is solved for the case where different accommodation coefficients can be used for each of the two bounding surfaces. In addition, the classical problem of “reverse temperature gradient” in the theory of evaporation and condensation is also solved for the case of two parallel liquid–vapor interfaces kept at different temperatures. In regard to half-space applications, an evaporation/condensation problem based on a presumed known interface condition and a heat-conduction problem (with no net flow) driven by energy flow from a bounding surface with know properties are each solved with what is considered a high degree of accuracy.  相似文献   

19.
The influence of thermal radiation on the flow and heat transfer within Newtonian liquid film over an unsteady stretching sheet with and without thermocapillarity is examined. The governing non‐linear partial differential equations describing the problem are reduced to a system of nonlinear ordinary differential equations using similarity transformation, which is solved numerically for different values of the thermal radiation parameter and the thermocapillarity parameter. The results show that the dimensionless velocity, the film thickness and the local Nusselt number increase as the thermocapillarity parameter increases, while the free surface temperature decreases with increasing the thermocapillarity parameter. Also, both the dimensionless temperature and the free surface temperature increase and the local Nusselt number decreases as the thermal radiation parameter increases. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Evaporation of multicomponent droplets is a critical problem in many engineering applications, for example spray combustion. Knowledge of droplet temperature is a key issue in understanding the highly complex heat and mass-transfer phenomena related to multicomponent droplet evaporation and combustion. In this work, optical diagnosis based on three color-laser-induced fluorescence was developed: the objective was to measure the temperature of binary droplets (ethanol and acetone mixtures), even when the composition varies with time. Demonstration on an overheated droplet stream of acetone–ethanol mixtures is described and the experimental data are compared with results from a numerical simulation based on the discrete-components model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号