共查询到20条相似文献,搜索用时 0 毫秒
1.
Ivo Roghair Julián Martínez Mercado Martin Van Sint Annaland Hans Kuipers Chao Sun Detlef Lohse 《International Journal of Multiphase Flow》2011
Direct numerical simulations (DNS) are performed to study the behavior of a swarm of rising air bubbles in water, employing the front tracking method, which allows to handle finite-size bubbles. The swarms consist of monodisperse deformable 4 mm bubbles with a gas fraction of 5% and 15%. This paper focuses on the comparison of the liquid energy spectra and bubble velocity probability density functions (PDFs) with experimental data obtained by phase-sensitive constant-temperature anemometry (CTA) and three-dimensional particle tracking velocimetry (PTV), respectively. 相似文献
2.
3.
Solid-particle motion and related transport phenomena in two-phase flow are fluctuating processes in space and time. A deterministic method can describe only partially the intrinsic physics of these processes. In this paper, the fluctuations of the flow parameters are modelled by considering the spatial correlations, and a probabilistic computational method for two-phase flow is presented. The probabilistic governing equations have been discretized in space using a finite volume method, and then solved by applying the Neumann expansion method. This last method is time efficient, and its convergence can be guaranteed even for large fluctuations. A liquid-solid particle mixture flow in a circular pipe is taken as an example. Computational results illustrate the merit of the probabilistic approach for the prediction of two-phase flow phenomena. 相似文献
4.
5.
An adaptive grid solution procedure is developed for incompressible flow problems in which grid refinement based on an equidistribution law is performed in high-error-estimate regions that are flagged from a preliminary coarse grid solution. Solutions on the locally refined and equidistributed meshes are obtained using boundary conditions interpolated from the preliminary coarse grid solution, and solutions on both the refined and coarse grid regions are successively improved using a multigrid approach. For this purpose, suitable correction terms for the coarse grid equations are derived for all variables in the flagged regions. This procedure with Local Adaptation, Multigridding and Equidistribution (LAME) concepts is applied to various flow problems to demonstrate the accuracy improvements obtained using this method. 相似文献
6.
This paper presents an application of the wavelet analysis technique for two-phase flow pattern identification by using the void fraction signals obtained from a multi-channel Impedance Void Meter (IVM) in a vertical-upward air–water flow. A new method for the objective discrimination of the two-phase flow pattern has been developed to provide information regarding the local energy of void fraction signals at a given scale on the joint time–frequency diagram. The void signals are processed with Continuous Wavelet Transform (CWT) to get the local wavelet energy coefficients map on the time–frequency diagram. The effective local wavelet energy and the effective scale are then calculated. Then the criteria for flow pattern identification are, finally, obtained. A series of void fraction measurements were conducted over a wide range of air–water vertical-upward flow condition to provide an extensive database to cover several types of flow patterns. The results show that the proposed method has a high precision for characterizing different flow regimes in two-phase flow, and is considerably more promising for the online recognition of two-phase flow patterns due to the short time of data processing. 相似文献
7.
Dartzi Pan 《国际流体数值方法杂志》2006,50(6):733-750
A simple and effective immersed boundary method using volume of body (VOB) function is implemented on unstructured Cartesian meshes. The flow solver is a second‐order accurate implicit pressure‐correction method for the incompressible Navier–Stokes equations. The domain inside the immersed body is viewed as being occupied by the same fluid as outside with a prescribed divergence‐free velocity field. Under this view a fluid–body interface is similar to a fluid–fluid interface encountered in the volume of fluid (VOF) method for the two‐fluid flow problems. The body can thus be identified by the VOB function similar to the VOF function. In fluid–body interface cells the velocity is obtained by a volume‐averaged mixture of body and fluid velocities. The pressure inside the immersed body satisfies the same pressure Poisson equation as outside. To enhance stability and convergence, multigrid methods are developed to solve the difference equations for both pressure and velocity. Various steady and unsteady flows with stationary and moving bodies are computed to validate and to demonstrate the capability of the current method. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
8.
9.
10.
The growing interest to examine the hydroelastic dynamics and stabilities of lightweight and flexible materials requires robust and accurate fluid–structure interaction(FSI)models. Classically, partitioned fluid and structure solvers are easier to implement compared to monolithic methods;however, partitioned FSI models are vulnerable to numerical("virtual added mass") instabilities for cases when the solid to fluid density ratio is low and if the flow is incompressible.As a partitioned method, the loosely hybrid coupled(LHC)method, which was introduced and validated in Young et al.(Acta Mech. Sin. 28:1030–1041, 2012), has been successfully used to efficiently and stably model lightweight and flexible structures. The LHC method achieves its numerical stability by, in addition to the viscous fluid forces, embedding potential flow approximations of the fluid induced forces to transform the partitioned FSI model into a semi-implicit scheme. The objective of this work is to derive and validate the numerical stability boundary of the LHC. The results show that the stability boundary of the LHC is much wider than traditional loosely coupled methods for a variety of numerical integration schemes. The results also show that inclusion of an estimate of the fluid inertial forces is the most critical to ensure the numerical stability when solving for fluid–structure interaction problems involving cases with a solid to fluid-added mass ratio less than one. 相似文献
11.
In the present paper, the Fractional Step method usually used in single fluid flow is here extended and applied for the two-fluid model resolution using the finite volume discretization. The use of a projection method resolution instead of the usual pressure-correction method for multi-fluid flow, successfully avoids iteration processes. On the other hand, the main weakness of the two fluid model used for simulations of free surface flows, which is the numerical diffusion of the interface, is also solved by means of the conservative Level Set method (interface sharpening) (Strubelj et al., 2009). Moreover, the use of the algorithm proposed has allowed presenting different free-surface cases with or without Level Set implementation even under coarse meshes under a wide range of density ratios. Thus, the numerical results presented, numerically verified, experimentally validated and converged under high density ratios, shows the capability and reliability of this resolution method for both mixed and unmixed flows. 相似文献
12.
A new technique for the numerical simulation of the free surface flows is developed. This technique is based on the finite element method with penalty formulation, and a flux method for surface advection. The advection part which is completely independent of the momentum solver is based on subdividing the fluid domain into small subvolumes along one of the co-ordinate axis. The subvolumes are then used to find the height function which will later describe the free surface. The free surface of the fluid in each subvolume is approximated by a line segment and its slope is calculated using the volume of the fluid in the two neighbouring subvolumes. Later, the unidirectional volume flux from one subvolume to its neighbouring one is calculated using the conservation laws, and the new surface line segments are reconstructed. This technique, referred to as the Height–Flux Method (HFM) is implemented to simulate the temporal instability of a capillary jet. The results of the numerical simulation well predict the experimental data. It is also shown that the HFM is computationally more efficient than the techniques which use a kinematic boundary condition for the surface advection. 相似文献
13.
Summary A numerical scheme is presented which employs the characteristic surfaces in space-time for solving Navier-Stokes equations for compressible fluid flow. We consider the general case of a three-dimensional flow, a simplification of which yields the equations of the two-dimensional case. Emphasis is put on the method itself. We apply it to simulate a laminar hypersonic flow around a circular cylinder of a five-components gas mixture of nitrogen and oxygen with thermally perfect constituents and at chemical nonequilibrium. First, the partial differential equations are transformed into a standard form with directional derivatives, enabling to attain the compatibility conditions, including the viscosity terms. These conditions are discretized by approximating their integrals along the corresponding characteristic surfaces. The result is an explicit time-marching numerical scheme. Using a grid fitted between the shock and the cylinder, and starting from roughly estimated initial conditions, a steady solution is searched. A comparison is made with the solution obtained under the assumption of a perfect gas. Received 6 April 1999; accepted for publication 13 May 1999 相似文献
14.
In this work, we extend the Particle Finite Element Method (PFEM) to multi‐fluid flow problems with the aim of exploiting the fact that Lagrangian methods are specially well suited for tracking interfaces. We develop a numerical scheme able to deal with large jumps in the physical properties, included surface tension, and able to accurately represent all types of discontinuities in the flow variables. The scheme is based on decoupling the velocity and pressure variables through a pressure segregation method that takes into account the interface conditions. The interface is defined to be aligned with the moving mesh, so that it remains sharp along time, and pressure degrees of freedom are duplicated at the interface nodes to represent the discontinuity of this variable due to surface tension and variable viscosity. Furthermore, the mesh is refined in the vicinity of the interface to improve the accuracy and the efficiency of the computations. We apply the resulting scheme to the benchmark problem of a two‐dimensional bubble rising in a liquid column presented in Hysing et al. (International Journal for Numerical Methods in Fluids 2009; 60 : 1259–1288), and propose two breakup and coalescence problems to assess the ability of a multi‐fluid code to model topology changes. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
15.
An alternative characteristic‐based scheme, the two‐step Taylor‐characteristic‐based Galerkin method is developed based on the introduction of multi‐step temporal Taylor series expansion up to second order along the characteristic of the momentum equation. Contrary to the classical characteristic‐based split (CBS) method, the current characteristic‐based method does not require splitting the momentum equation, and segregate the calculation of the pressure from that of the velocity by using the momentum–pressure Poisson equation method. Some benchmark problems are used to examine the effectiveness of the proposed algorithm and to compare with the original CBS method, and the results show that the proposed method has preferable accuracy with less numerical dissipation. We further applied the method to the numerical simulation of flow around equilateral triangular cylinder with different incidence angles in free stream. In this numerical investigation, the flow simulations are carried out in the low Reynolds number range. Instantaneous streamlines around the cylinder are used as a means to visualize the wake region behind, and they clearly show the flow pattern around the cylinder in time. The influence of incidence angle on flow characteristic parameters such as Strouhal number, Drag and Lift coefficients are discussed quantitatively. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
16.
A meshfree weak–strong (MWS) form method has been proposed by the authors' group for linear solid mechanics problems based on a combined weak and strong form of governing equations. This paper formulates the MWS method for the incompressible Navier–Stokes equations that is non‐linear in nature. In this method, the meshfree collocation method based on strong form equations is applied to the interior nodes and the nodes on the essential boundaries; the local Petrov–Galerkin weak form is applied only to the nodes on the natural boundaries of the problem domain. The MWS method is then applied to simulate the steady problem of natural convection in an enclosed domain and the unsteady problem of viscous flow around a circular cylinder using both regular and irregular nodal distributions. The simulation results are validated by comparing with those of other numerical methods as well as experimental data. It is demonstrated that the MWS method has very good efficiency and accuracy for fluid flow problems. It works perfectly well for irregular nodes using only local quadrature cells for nodes on the natural boundary, which can be generated without any difficulty. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
17.
Gravity potential flows with free surface still present considerable difficulties in non-linear mathematical problems. Previous
researchers using analytic function theory could consider only simple geometrical boundaries. Analyzing curvilinear solid
boundaries by means of analytic theory is a difficult problem that has not been solved. In this paper, using Muskhelishvili's
singular integral equation theory, we turn the gravity flow problem into the Riemann-Hilbert problem. Taking the length of
the streamline of the boundary as the independent variable and the velocity potential of the boundary as the function to be
determined, we avoid the difficulty that the angle of the curved fixed part is unknown. Following the difference method and
the finite element method, we develop a new numerical method that is suitable for complex solid boundaries and overcome the
difficulties encountered in applying analytic function theory. Under known discharge, the convergence and stability of the
method have been proved and an estimation of error has been obtained. The method has been successfully applied to the calculation
of the flow past spillway buckets. The calculated values agree well with the measured results. 相似文献
18.
In this study we developed simple, coupled algorithms for solving low‐Reynolds‐number flows applicable to micro‐scale flows such as electro‐osmotic flows. The most popular scheme, i.e. the projection method, is not suitable for such flows because of its undesirable slip effect on boundaries at low‐Reynolds‐numbers. In our method, the velocity and pressure are strongly coupled, and the momentum and pressure equations are solved iteratively by using the successive over relaxation (SOR) method while exchanging the unknown variables as soon as they have been updated. The developed methods are applied to a model flow for evaluating their performance. It was found that the coupled schemes are indeed superior to a projection method, i.e. the fractional‐step method, in both numerical accuracy and CPU time. The code is then applied to a dc electro‐osmotic flow within a cavity driven by electrical force acting on the ions spread in the fluid. In this application, the system of equations for the fluid flow and that for the ion transport are solved in a decoupled way, but each system is solved by using fully implicit schemes. From the simulations and by introducing the concept of vorticity source, we can identify two roles of the body force, one contributing to build‐up of the osmotic pressure and the other to the fluid flow. The interesting reverse flow occurring after the external potentials applied on the electrodes have been shut off is also investigated in terms of the vorticity source. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
19.
A well‐recognized approach for handling the incompressibility constraint by operating directly on the discretized Navier–Stokes equations is used to obtain the decoupling of the pressure from the velocity field. By following the current developments by Guermond and Shen, the possibilities of obtaining accurate pressure and reducing boundary‐layer effect for the pressure are analysed. The present study mainly reports the numerical solutions of an unsteady Navier–Stokes problem based on the so‐called consistent splitting scheme (J. Comput. Phys. 2003; 192 :262–276). At the same time the Dirichlet boundary value conditions are considered. The accuracy of the method is carefully examined against the exact solution for an unsteady flow physics problem in a simply connected domain. The effectiveness is illustrated viz. several computations of 2D double lid‐driven cavity problems. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
20.
Fluidelastic instability is a key issue in steam generator tube bundles subjected to cross-flow. The extension to two-phase flow of the existing theoretical models, developed and tested mostly for single phase flow, is investigated in this paper. The time delay is one of the key parameter for modeling fluidelastic instability, especially the damping controlled mechanism. The direct measurement of the time delay between the tube motion and the fluid force faces certain difficulties in two-phase flow since the high turbulence due to the interaction of the two components of the flow may increase the randomness of the measured force. To overcome this difficulty, an innovative method for extracting the time delay inherent to the quasi-steady model for fluidelastic instability is proposed in this study.Firstly, experimental measurements of unsteady and quasi-static fluid forces (in the lift direction) acting on a tube subjected to air–water two-phase flow were conducted. The unsteady fluid forces were measured by exciting the tube using a linear motor. These forces were measured for a wide range of void fractions, flow velocities and excitation frequencies. The experimental results showed that the unsteady fluid forces could be represented as single valued function of the reduced flow velocity. It was also found that for a given frequency, the unsteady fluid force phase was weakly dependent on the void fraction for the range of flow velocities considered.The time delay was determined by equating the unsteady fluid forces with the quasi-steady forces. The results given by this innovative method of measuring the time delay in two-phase flow were consistent with theoretical expectations. The time delay could be expressed as a linear function of the convection time and the time delay parameter was determined for void fractions ranging from 60% to 90%. 相似文献