首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of tube diameter on two-phase frictional pressure drop was investigated in circular tubes with inner diameters of 0.6, 1.2, 1.7, 2.6 and 3.4 mm using air and water. The gas and liquid superficial velocity ranges were 0.01-50 m/s and 0.01-3 m/s, respectively. The gas and liquid flow rates were measured and the two-phase flow pattern images were recorded using high-speed CMOS camera. Unique flow patterns were observed for smaller tube diameters. Pressure drop was measured and compared with various existing models such as homogeneous model and Lockhart-Martinelli model. It appears that the dominant effect of surface tension shrinking the flow stratification in the annular regime is important. It was found that existing models are inadequate in predicting the pressure drop for all the flow regimes visualized. Based on the analysis of present experimental frictional pressure drop data a correlation is proposed for predicting Chisholm parameter “C” in slug annular flow pattern. For all other flow regimes Chisholm’s original correlation appears to be adequate except the bubbly flow regime where homogeneous model works well. The modification results in overall mean deviation of pressure drop within 25% for all tube diameters considered. This approach of flow regime based modification of liquid gas interaction parameter appears to be the key to pressure drop prediction in narrow tubes.  相似文献   

2.
Immiscible viscous liquid–liquid two-phase flow patterns and pressure drop characteristics in a circular microchannel have been investigated. Water and silicone oil with a dynamic viscosity of 863 mPa s were injected into a fused silica microchannel with an inner diameter of 250 μm. As the microchannel was initially filled with the silicone oil, an oil film was found to always form and remain on the microchannel wall. Different flow patterns were observed and classified over a wide range of water and oil flow rates. A flow pattern map is presented in terms of Re, Ca, and We numbers. Two-phase pressure drop data have also been collected and analyzed to develop a simple correlation for slug, annular and annular-droplet flow patterns in terms of superficial water and oil velocities.  相似文献   

3.
This paper presents flow map investigations of adiabatic two-phase flow in square cross-sectioned, 200 μm deep microchannels fabricated in silicon, employing laser induced fluorescence microscopy. The influence of surface tension and nozzle geometry on the flow pattern transition was investigated using two nozzle widths (orifices of 30 μm and 50 μm, respectively) and methanol–water solutions with CO2 as the gas phase. It was found and quantified that smaller nozzle geometries and smaller liquid surface tension promote the propagation of capillary gas bubbles at lower superficial gas and liquid velocities. Within the measurement domain of superficial gas (0.01–0.625 m/s) and liquid (0.0005–0.5000 m/s) velocities, we observed dispersed bubbly, regularly ordered bubbly, wedging, slug and annular flows, thus extending the experimental knowledge base to smaller superficial liquid velocities by almost two orders of magnitude. With the help of the flow maps presented herein, we were able to characterize the observed regularly ordered bubbly flow as the transition regime between dispersed bubbly and wedging flow. The results of the present investigation are of direct relevance to the operation of small-scale direct methanol fuel cells.  相似文献   

4.
The flow boiling patterns of liquid nitrogen in a vertical mini-tube with an inner diameter of 1.931 mm are visualized with a high-speed digital camera. The superficial gas and liquid velocities are in the ranges of 0.01–26.5 m/s and 0.01–1.2 m/s, respectively. Four typical flow patterns, namely, bubbly, slug, churn and annular flow are observed. Some interesting scenes about the entrainment and liquid droplet deposition in the churn and annular flow, and the flow reversal with the indication of negative pressure drop, are also presented. Based on the visualization, the two-phase flow regime maps are obtained. Compared with the flow regime maps for gas–water flow in tubes with similar hydraulic diameters, the region of slug flow in the present study reduces significantly. Correspondingly, the transition boundary from the bubbly flow to slug flow shifts to higher superficial gas velocity, and that of churn to annular flow moves to lower superficial gas velocity. Moreover, time-averaged void fraction is calculated by quantitative image-digitizing technique and compared with various prediction models. Finally, three kinds of oscillations with long-period and large-amplitude are found, possible explanation for the oscillations is given by comparing the instantaneous flow images with the data of pressure, mass flux and temperature recorded synchronously.  相似文献   

5.
Two-phase air–water flow and heat transfer in a 25 mm internal diameter horizontal pipe were investigated experimentally. The water superficial velocity varied from 24.2 m/s to 41.5 m/s and the air superficial velocity varied from 0.02 m/s to 0.09 m/s. The aim of the study was to determine the heat transfer coefficient and its connection to flow pattern and liquid film thickness. The flow patterns were visualized using a high speed video camera, and the film thickness was measured by the conductive tomography technique. The heat transfer coefficient was calculated from the temperature measurements using the infrared thermography method. It was found that the heat transfer coefficient at the bottom of the pipe is up to three times higher than that at the top, and becomes more uniform around the pipe for higher air flow-rates. Correlations on local and average Nusselt number were obtained and compared to results reported in the literature. The behavior of local heat transfer coefficient was analyzed and the role of film thickness and flow pattern was clarified.  相似文献   

6.
Gas–liquid two-phase flow in a microfluidic T-junction with nearly square microchannels of 113 μm hydraulic diameter was investigated experimentally and numerically. Air and water superficial velocities were 0.018–0.791 m/s and 0.042–0.757 m/s, respectively. Three-dimensional modeling was performed with computational fluid dynamics (CFD) software FLUENT and the volume of fluid (VOF) model. Slug flow (snapping/breaking/jetting) and stratified flow were observed experimentally. Numerically predicted void fraction followed a linear relationship with the homogeneous void fraction, while experimental values depended on the superficial velocity ratio UG/UL. Higher experimental velocity slip caused by gas inlet pressure build-up and oscillation caused deviation from numerical predictions. Velocity slip was found to depend on the cross-sectional area coverage of the gas slug, the formation of a liquid film and the presence of liquid at the channel corners. Numerical modeling was found to require improvement to treat the contact angle and contact line slip, and could benefit from the use of a dynamic boundary condition to simulate the compressible gas phase inlet reservoir.  相似文献   

7.
Despite the importance of air–oil slug flows to many industrial applications, their available data reported in the literature are limited compared to air–water slug flows. The main objective of the present study is to explain how air–oil slug flow parameters can be experimentally investigated using hot-film anemometry, capacitance sensors and image processing. Experiments were performed using air–oil slug flow through a horizontal pipe for air superficial velocities ranged from 0.01 m/s to 0.65 m/s and oil superficial velocities ranged from 0.03 m/s to 2.3 m/s. The signal obtained from the hot-film anemometer was used to determine the time-averaged local void fraction and liquid velocity and turbulence intensity for air–oil slug flow. The capacitance signals along with the data obtained by image processing of the flow were used to determine the elongated bubble length and velocity. The measurements techniques used found to describe in detail the internal structure of the slug flow. Finally, the experimental results were compared to existing models and correlations.  相似文献   

8.
The liquid turbulence structure of air–water bubbly flow in a 200 mm diameter vertical pipe was experimentally investigated. A dual optical probe was used to measure the bubble characteristics, while the liquid turbulence was measured using hot-film anemometry. Experiments were performed at two liquid superficial velocities of 0.2 and 0.68 m/s for gas superficial velocities in the range of 0–0.18 m/s, corresponding to an area averaged void fraction up to 13.6%. In general, there is an increase in the liquid turbulence energy when the bubbles are introduced into the liquid flow. The increase in the energy mainly occurs over a range of length scales that are on the order of the bubble diameter. A suppression of the turbulence was observed close to the wall at very low void fraction flows. Initially, the suppression occurs in the low wave number range and then extends to higher wave numbers as the suppression is increased.  相似文献   

9.
Measurements of drag-reduction are presented for oil–water flowing in a horizontal 0.0254 m pipe. Different oil–water configurations were observed. The injection of water soluble polymer solution (PDRA) in some cases produced drag reduction of about 65% with concentration of only 10–15 ppm. The results showed a significant reduction in pressure gradient due to PDRA especially at high mixture velocity which was accompanied by a clear change in the flow pattern. Phase inversion point in dispersed flow regime occurred at a water fraction range of (0.33–0.35) indicated by its pressure drop peak which was disappeared by injecting only 5 ppm (weight basis) of PDRA. Effect of PDRA concentration and molecular weight on flow patterns and pressure drops are presented in this study. Influence of salt content in the water phase on the performance of PDRA is also examined in this paper.  相似文献   

10.
The two-phase pressure drop in vertical industrial pipes is mainly determined by gravitation and acceleration of the fluid, which means that the void fraction is key an important parameter in any model to predict pressure drops. Typically, these models are applied in industry to size pumps and, e.g., emergency relief systems. There is a shortage of void fraction data in the literature for liquids with a dynamic viscosity above 1000 mPa s. Adiabatic experiments have been performed of mixtures of nitrogen and solutions of polyvinylpyrrolidone (Luviskol®) in water with dynamic viscosities in the range 900–7000 mPa s. Inner tube diameter was 54.5 mm. Mass flux and quality were varied in a wide range: 8–3500 kg/m2/s and 0–82%, respectively. The corresponding superficial velocities were 0.005–3.4 m/s for the liquid and 0–30 m/s for the nitrogen. For comparison, reference measurements were taken of mixtures of nitrogen with water (1 mPa s). Care has been taken to measure only well-developed flows.  相似文献   

11.
The effect of oil and water velocities, pipe diameter and oil viscosity on the transition from stratified to non-stratified patterns was studied experimentally in horizontal oil-water flow. The investigations were carried out in a horizontal acrylic test section with 25.4 and 19 mm ID with water and two oil viscosities (6.4 and 12 cP) as test fluids. A high-speed video camera was used to study the flow structures and the transition. At certain oil velocity, stratified flow was found to transform into bubbly and dual continuous flows as superficial water velocity increased for both pipe diameters using the 12 cP oil viscosity. The transition to bubbly flow was found to disappear when the 6.4 cP oil viscosity was used in the 25.4 mm pipe. This was due to the low E?tv?s number. Transition to dual continuous flow occurred at lower water velocity for oil velocity up 0.21 m/s when 6.4 cP oil was used in the 25.4 mm ID pipe, while for Uso > 0.21 m/s, the transition appeared at lower water velocity with the 12 cP oil.The effect of pipe diameter was also found to influence the transition between stratified and non-stratified flows. At certain superficial oil velocity, the water velocity required to form bubbly flow increased as the pipe diameter increased while the water velocity required for drop formation decreased as the pipe diameter increased. The maximum wave amplitude was found to grow exponentially with respect to the mixture velocity. The experimental maximum amplitudes at the transition to non-stratified flow agreed reasonably well with the critical amplitude model. Finally, it was found that none of the available models were able to predict the present experimental data at the transition from stratified to non-stratified flow.  相似文献   

12.
Adiabatic and diabatic two-phase venting flow in a microchannel   总被引:1,自引:0,他引:1  
The growth and advection of the vapor phase in two-phase microchannel heat exchangers increase the system pressure and cause flow instabilities. One solution is to locally vent the vapor formed by capping the microchannels with a porous, hydrophobic membrane. In this paper we visualize this venting process in a single 124 μm by 98 μm copper microchannel with a 65 μm thick, 220 nm pore diameter hydrophobic Teflon membrane wall to determine the impact of varying flow conditions on the flow structures and venting process during adiabatic and diabatic operation. We characterize liquid velocities of 0.14, 0.36 and 0.65 m/s with superficial air velocities varying from 0.3 to 8 m/s. Wavy-stratified and stratified flow dominated low liquid velocities while annular type flows dominated at the higher velocities. Gas/vapor venting can be improved by increasing the venting area, increasing the trans-membrane pressure or using thinner, high permeability membranes. Diabatic experiments with mass flux velocities of 140 and 340 kg/s/m2 and exit qualities up to 20% found that stratified type flows dominate at lower mass fluxes while churn-annular flow became more prevalent at the higher mass-flux and quality. The diabatic flow regimes are believed to significantly influence the pressure-drop and heat transfer coefficient in vapor venting heat exchangers.  相似文献   

13.
To promote a better understanding of liquid–liquid two-phase flow behavior, particularly under high pressure, flow patterns of n-hexadecane–CO2 liquid–liquid two-phase upward flow in vertical stainless steel pipes were experimentally investigated. Observations were made in two 0.0015 m I.D. pipes of different lengths (0.068 m and 0.5 m) under high pressure varying from 10.3 to 29.6 MPa using a high pressure visualization system. The total flow rate was fixed at 2.0 × 10−6 m3/min, while the flow rate ratio (φ) varied from 0.05 to 19. Bubbly flow, plug flow, slug flow, annular flow, and near-one-phase flow regions were found in both pipes, while stratified flow was observed only in the 0.068 m pipe. Flow pattern maps were constructed in the flow rate ratio versus pressure graph, which demonstrates significant impacts of flow rate ratio, pipe length, and pressure on flow patterns. These impacts are discussed in detail. To the authors’ best knowledge, this work is the first attempt to observe complex liquid–liquid two-phase flow behavior with flow pattern transitions under high pressure, and contributes to a better understanding of liquid–liquid two-phase flow behavior.  相似文献   

14.
15.
In this work, co-current flow characteristics of air/non-Newtonian liquid systems in inclined smooth pipes are studied experimentally and theoretically using transparent tubes of 20, 40 and 60 mm in diameter. Each tube includes two 10 m long pipe branches connected by a U-bend that is capable of being inclined to any angle, from a completely horizontal to a fully vertical position. The flow rate of each phase is varied over a wide range. The studied flow phenomena are bubbly flow, stratified flow, plug flow, slug flow, churn flow and annular flow. These are observed and recorded by a high-speed camera over a wide range of operating conditions. The effects of the liquid phase properties, the inclination angle and the pipe diameter on two-phase flow characteristics are systematically studied. The Heywood–Charles model for horizontal flow was modified to accommodate stratified flow in inclined pipes, taking into account the average void fraction and pressure drop of the mixture flow of a gas/non-Newtonian liquid. The pressure drop gradient model of Taitel and Barnea for a gas/Newtonian liquid slug flow was extended to include liquids possessing shear-thinning flow behaviour in inclined pipes. The comparison of the predicted values with the experimental data shows that the models presented here provide a reasonable estimate of the average void fraction and the corresponding pressure drop for the mixture flow of a gas/non-Newtonian liquid.  相似文献   

16.
The bubble and liquid turbulence characteristics of air–water bubbly flow in a 200 mm diameter vertical pipe was experimentally investigated. The bubble characteristics were measured using a dual optical probe, while the liquid-phase turbulence was measured using hot-film anemometry. Measurements were performed at six liquid superficial velocities in the range of 0.2–0.68 m/s and gas superficial velocity from 0.005 to 0.18 m/s, corresponding to an area average void fraction from 1.2% to 15.4%. At low void fraction flow, the radial void fraction distribution showed a wall peak which changed to a core peak profile as the void fraction was increased. The liquid average velocity and the turbulence intensities were less uniform in the core region of the pipe as the void fraction profile changed from a wall to a core peak. In general, there is an increase in the turbulence intensities when the bubbles are introduced into the flow. However, a turbulence suppression was observed close to the wall at high liquid superficial velocities for low void fractions up to about 1.6%. The net radial interfacial force on the bubbles was estimated from the momentum equations using the measured profiles. The radial migration of the bubbles in the core region of the pipe, which determines the shape of the void profile, was related to the balance between the turbulent dispersion and the lift forces. The ratio between these forces was characterized by a dimensionless group that includes the area averaged Eötvös number, slip ratio, and the ratio between the apparent added kinetic energy to the actual kinetic energy of the liquid. A non-dimensional map based on this dimensionless group and the force ratio is proposed to distinguish the conditions under which a wall or core peak void profile occurs in bubbly flows.  相似文献   

17.
In this study, non-intrusive pressure drop, liquid base film thickness distribution, and wave behavior measurements have been obtained for 206 horizontal annular two-phase (air–water) flow conditions in 8.8, 15.1, and 26.3 mm ID tubes. Reliable wave velocity measurements are available for 185 of these flow conditions, while 131 flow conditions allow for reliable wave frequency measurements. The wave velocity is found to be predicted to within 9% by gas friction velocity and 6% by an optimized correlation of similar structure. Wave frequency can also be predicted with a simple correlation to within 5% for the 8.8 and 15.1 mm tubes, but a separate relation is required to explain 26.3 mm frequency data. The differences in wave behavior between the annular and wavy-annular/wavy regimes are also discussed.  相似文献   

18.
Flow patterns, the pressure drag reduction and the heat transfer in a vertical upward air–water flow with the surfactant having negligible environmental impact were studied experimentally in a tube of 2.5 cm in diameter. Visual observations showed that gas bubbles in the air–water solution with surfactant are smaller in size but much larger in number than in pure air–water mixture, at the all flow regimes. The transition lines in the flow regime map for the solution of air–water mixture with surfactant of the 300 ppm concentration are mainly consistent with the experimental data obtained in clear air–water mixture. An additive of surfactant to two-phase flow reduces the total pressure drop and decrease heat transfer, especially in the churn flow regime.  相似文献   

19.
An experimental study has been made of the influence of gas injection on the phase inversion between oil and water flowing through a vertical tube. Particular attention was paid to the influence on the critical concentration of oil and water where phase inversion occurs and on the pressure drop increase over the tube during phase inversion. By using different types of gas injectors also the influence of the bubble size of the injected gas on the phase inversion was studied. It was found that gas injection does not significantly change the critical concentration, but the influence on the pressure drop is considerable. For mixture velocities larger than 1 m/s, the pressure drop over the tube increases with decreasing bubble size and at inversion can become even larger than the pressure drop during the flow of oil and water without gas injection.  相似文献   

20.
The aim of this study is to develop a model for the determination of the superficial velocities in horizontal and slightly inclined oil–water pipe flow conditions by using pressure gradient and mixture density information. In this article an inverse model is suggested for a dispersion of oil in water and of water in oil. This approach permits to select dispersed flow conditions from a set of experimental data, and uses a new hybrid model for the effective viscosity. A set of 310 oil–water experimental data points collected on an experimental set-up of length L = 15 m and diameter D = 8.28 cm at various (slight) orientations is used to validate the inverse method. The comparison between model reconstructions and measured flow velocities show a reasonable agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号