首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The polar method is a minimal invariant representation in plane elasticity. A plane orthotropic elastic behaviour is expressed by five polar invariants related to the elastic symmetries. In this paper, considering the orthotropy orientation and the polar invariants as optimisation parameters, we discuss the problem of minimising the elastic energy for a given state of stress. The minimisation with respect to the orientation is solved in order to find the associated optimal elastic energy for given polar invariants. Then, this quantity is minimised with respect to the polar invariants which characterise the magnitude of the anisotropic components of the elastic stiffness tensor. Optimal uncoupled composite laminates corresponding to this optimum are presented for membrane and bending loadings.  相似文献   

2.
The properties of acceleration waves are investigated for situations in which the waves propagate in isotropic heat-conducting elastic media subject to arbitrary sets of constraints. Conditions under which waves may exist in the presence of constraints are investigated for classes of constraints broad enough to encompass all those encountered in practice. Attention is focussed on principal waves, and results are presented for the growth of the amplitudes of such waves first for fronts of arbitrary curvature, and subsequently by specialisation for plane, cylindrical and spherical waves travelling in material which has undergone one-dimensional plane deformation, cylindrically symmetric and spherically symmetric deformation, respectively.  相似文献   

3.
The influence of an external medium on the evolution of two-dimensional long non-linear strain waves in an elastic plate is studied. The governing non-linear equations for longitudinal and shear waves are obtained. A threshold value of the external medium parameter is found that separates the existence of either one-dimensional (or plane) localized strain wave or two-dimensional localized strain wave. A considerable increase in the amplitude of the wave is found during the formation of the two-dimensional localized strain wave from an arbitrary initial pulse.  相似文献   

4.
The present work concerns the investigation of the two-dimensional direct scattering problem of time-harmonic elastic waves from bounded anisotropic components of isotropic media. We obtain a Fourier series expansion for the elastic field in the interior of the anisotropic inclusion based on a suitable diagonalization applied to the underlying differential system and a plane wave expansion of the sought field, provided that the inclusion exhibits orthotropic symmetry. This expansion is then exploited to acquire a semi-analytical solution to the associated elastic transmission scattering problem. Numerical results for several geometric configurations and varying degree of anisotropy are presented revealing the pronounced effect of the specific anisotropic character on the scattering mechanism.  相似文献   

5.
Two-dimensional stress waves in a general incompressible elastic solid are investigated. First, basic equations for simple waves and shock waves are presented for a general strain energy function. Then the characteristic wave speeds and the associated characteristic vectors are deduced. It is shown that there usually exist two simple waves and two shock waves. Finally, two examples are given for the case of plane strain deformation and antiplane strain deformation, respectively. It is proved that, in the case of plane strain deformation the oblique reflection problem of a plane shock is not solvable in general.  相似文献   

6.
The problem of dynamic interaction of wave phase fronts with anisotropic elastic media interfaces is considered. A technique based on joint use of the ray theory, locally plane approach and theory of stereomechanical impact is elaborated. It is employed for the investigation of discontinuous waves propagation in anisotropic tectonic structures. The cases of interaction of quasi-longitudinal and quasi-shear discontinuous waves with the interfaces separating different anisotropic elastic media are treated. The issues are considered which are associated with the wave front surfaces bifurcations, generation of their singularities and caustics, as well as with stress concentration and formation of zones where the stresses tend to infinity.  相似文献   

7.
A laminate weakened by multiple elliptical holes of arbitrary distribution, arbitrary orientation and arbitrary dimensions, is treated as an anisotropic, infinite, multiple connected thin plate. By Faber series expansion [1–6] and a complex potential method in the plane theory of thermo-elasticity of an anisotropic body, the general step to deduce the thermostress concentration in the laminate subjected to arbitrary mechanical and thermal loads is obtained.Supported by The Chinese Science Foundation of Aeronautics  相似文献   

8.
Weakly non-linear plane waves are considered in hyperelastic crystals. Evolution equations are derived at a quadratically non-linear level for the amplitudes of quasi-longitudinal and quasi-transverse waves propagating in arbitrary anisotropic media. The form of the equations obtained depends upon the direction of propagation relative to the crystal axes. A single equation is found for all propagation directions for quasi-longitudinal waves, but a pair of coupled equations occurs for quasi-transverse waves propagating along directions of degeneracy, or acoustic axes. The coupled equations involve four material parameters but they simplify if the wave propagates along an axis of material symmetry. Thus, only two parameters arise for propagation along an axis of twofold symmetry, and one for a threefold axis. The transverse wave equations decouple if the axis is fourfold or higher. In the absence of a symmetry axis it is possible that the evolution equations of the quasi-transverse waves decouple if the third-order elastic moduli satisfy a certain identity. The theoretical results are illustrated with explicit examples.  相似文献   

9.
The boundary layer method proposed by Everstine and Pipkin for the analysis of highly anisotropic materials, such as fibre-reinforced materials, in elastic plane strain is developed and extended also to include plane stress. It is applied to problems of point forces acting on half-planes, and to two crack problems. The boundary layer solutions are compared with known exact solutions in anisotropic elasticity, and it is found that the boundary layer theory gives good results for elastic constants typical of a carbon fibre reinforced resin.  相似文献   

10.
We study the plane deformation of an elastic composite system made up of an anisotropic elliptical inclusion and an anisotropic foreign matrix surrounding the inclusion. In order to capture the influence of interface energy on the local elastic field as the size of the inclusion approaches the nanoscale, we refer to the Gurtin-Murdoch model of interface elasticity to describe the inclusion-matrix interface as an imaginary and extremely stiff but zero-thickness layer of a finite stretching modulus. As opposed to isotropic cases in which the effects of interface elasticity are usually assumed to be uniform (described by a constant interface stretching modulus for the entire interface), the anisotropic case considered here necessitates non-uniform effects of interface elasticity (described by a non-constant interface stretching modulus), because the bulk surrounding the interface is anisotropic. To this end, we treat the interface stretching modulus of the anisotropic composite system as a variable on the interface curve depending on the specific tangential direction of the interface. We then devise a unified analytic procedure to determine the full stress field in the inclusion and matrix, which is applicable to the arbitrary orientation and aspect ratio of the inclusion, an arbitrarily variable interface modulus, and an arbitrary uniform external loading applied remotely. The non-uniform interface effects on the external loading-induced stress distribution near the interface are explored via a group of numerical examples. It is demonstrated that whether the nonuniformity of the interface effects has a significant effect on the stress field around the inclusion mainly depends on the direction of the external loading and the aspect ratio of the inclusion.  相似文献   

11.
This paper utilized anisotropic wave propagation theory to measure the elastic constants of a unidirectional fiber-reinforced composite specimen. For plane waves propagating in the composite specimen, the deviation of the propagational directions between the energy and phase velocities were measured. It is found that in such a sample, the deviations may be as large as 60 degrees. The measured energy velocities were transformed to the phase velocities of the plane waves by employing a numerical scheme. It is demonstrated that the elastic constants of a unidirectional fiber-reinforced composite can be determined by conducting ultrasonic experiments in two principal symmetry planes.  相似文献   

12.
Out-of-plane buckling of anisotropic elastic plate subjected to a simple shear is investigated. From exact 3-D equilibrium conditions of anisotropic elastic body with a plane of elastic symmetry at critical configuration, the eqution for buckling direction (buckling wave direction) parameter is derived and the shape functions of possible buckling modes are obtained. The traction free boundary conditions which must hold on the upper and lower surfaces of plate lead to a linear eigenvalue problem whose nontrivial solutions are just the possible buckling modes for the plate. The buckling conditions for both flexural and barreling modes are presented. As a particular example of buckling of anisotropic elastic plate, the buckling of an orthotropic elastic plate, which is subjected to simple shear along a direction making an arbitrary angle of θ with respect to an elastic principal axis of materials, is analyzed. The buckling direction varies with θ and the critical amount of shear. The numerical results show that only the flexural mode can indeed exist. Project supported by the National Natural Science Foundation of China (No. 19772032).  相似文献   

13.
The problem of the simple smooth curvilinear crack in an infinite anisotropic elastic medium under conditions of generalized plane stress or plane strain and under the supposition that the plane of the problem is a plane of elastic symmetry of the anisotropic medium is reduced to a complex Cauchy-type singular integral equation along the crack together with a condition of single-valuedness of displacements around the crack by using the complex potentials technique. Application to the case of a straight crack is also given.  相似文献   

14.
Reflection characteristics of longitudinal strain waves in a semi-infinite elastic rod con-nected to a viscoelastic stratum are investigated analytically.The three-dimensional viscoelasticity the-ory is applied to the stratum,and the Laplace transform with respect to time and the numerical inverseLaplace transform by means of Laguerre function are used.The time histories for the longitudinalstrain of an arbitrary point of the rod are presented.Two typical viscoelastic models are considered,one is the usual Maxwell-Voigt model,the other is whose relaxation function is given by a power law.The numerical results for the two models are presented and compared each other and also with previ-ously published results for the elastic stratum.  相似文献   

15.
The propagation and attenuation of elastic waves in a random anisotropic two-phase medium is studied using statistical averaging procedures and a self-consistent multiple scattering theory. The specific geometry and orientation of the inhomogeneities (second phase) are incorporated into the formulation via the scattering matrix of each inhomogeneity. The anisotropy of the composite medium is due to the specific orientation of the non-symmetric inclusions. At low frequencies, analytical expressions are derived for the effective wave number in the average medium as a function of the geometry and the material properties and the angle of orientation of the inclusions. The results for the special cases of oriented cracks may find applications in geophysics and material science. The formulation is ideally suited for numerical computation at higher frequencies as evidenced by the results presented for composites reinforced by fibers of elliptical cross section.  相似文献   

16.
This paper considers the plane stress problem of generally anisotropic beams with elastic compliance parameters being arbitrary functions of the thickness coordinate. Firstly, the partial differential equation, which is satisfied by the Airy stress function for the plane problem of anisotropic functionally graded materials and involves the effect of body force, is derived. Secondly, a unified method is developed to obtain the stress function. The analytical expressions of axial force, bending moment, shear force and displacements are then deduced through integration. Thirdly, the stress function is employed to solve problems of anisotropic functionally graded plane beams, with the integral constants completely determined from boundary conditions. A series of elasticity solutions are thus obtained, including the solution for beams under tension and pure bending, the solution for cantilever beams subjected to shear force applied at the free end, the solution for cantilever beams or simply supported beams subjected to uniform load, the solution for fixed–fixed beams subjected to uniform load, and the one for beams subjected to body force, etc. These solutions can be easily degenerated into the elasticity solutions for homogeneous beams. Some of them are absolutely new to literature, and some coincide with the available solutions. It is also found that there are certain errors in several available solutions. A numerical example is finally presented to show the effect of material inhomogeneity on the elastic field in a functionally graded anisotropic cantilever beam.  相似文献   

17.
多椭圆孔正交异性板的热应力集中   总被引:1,自引:0,他引:1  
本文利用各向异性体的平面热传导、平面热弹性理论中的复势方法,以Fabor级数为工具,求解了含任意设置的、任意有限个椭圆孔的复合材料层板的热传导以及热弹性第一和第二边值问题.含二、三、四孔层板的数值结果表明了各有关参数对热应力集中的影响.  相似文献   

18.
We use generalized functionally invariant solutions [1] of the equations of motion to obtain and analytically study solutions of the plane problem of reflection and refraction of plane waves on the interface of two anisotropic media with four elastic constants depending on the angles of incidence of primary waves for various relations between the elastic constants of the contacting media. For the primary waves, we find the ranges of incidence angles for which real and complex secondary waves are excited. We study all possible combinations of the distribution of phase velocities and reflection and refraction angles in detail and obtain conditions characterizing the directions of the energy flux vectors for the primary and secondary waves depending on the incidence angles of the primary waves for different relations between the elastic constants of the contacting media, which satisfy the necessary and sufficient conditions for the elastic energy form to be positive definite.  相似文献   

19.
The propagation of plane vertical transverse waves at an interface of a semi-infinite piezoelectric elastic medium under the influence of the initial stresses is discussed. The free surface of the piezoelectric elastic medium is considered to be adjacent to vacuum. We assumed that the piezoelectric material is anisotropic of the type of a transversely isotropic crystals (hexagonal crystal structure, class 6 mm). For an incident of vertical transverse plane wave, four types (two for the displacement and two for the electric potential) of reflected plane waves, called quasi-longitudinal (qP) and quasi-shear vertical (qSV) waves are shown to be exist. The relations governing the reflection coefficients of these reflected waves for various boundary conditions (mixed-free-fixed) are derived. It has been shown analytically that reflected coefficients of (qP) and (qSV) waves depend upon the angle of incidence, the parameters of electric potential, the material constants of the medium as well as the initial stresses presented in the medium. The numerical computations of reflection coefficients for different values of initial stresses have been carried out by computer for aluminum nitride (AlN) as an example and the results are given in the form of graphs. Finally, particular cases are considered in the absence of the initial stresses and the electric potential. Some of earlier studies have been compared to the special cases and shown good agreement with them.  相似文献   

20.
In this paper, the problem of a crack embedded in a half-plane piezoelectric solid with traction-induction free boundary is analyzed. A system of singular integral equations is formulated for the materials with general anisotropic piezoelectric properties and for the crack with arbitrary orientation. The kernel functions developed are in complex form for general anisotropic piezoelectric materials and are then specialized to the case of transversely isotropic piezoelectric materials which are in real form. The obtained coupled mechanical and electric real kernel functions may be reduced to those kernel functions for purely elastic problems when the electric effects disappear. The system of singular integral equations is solved numerically and the coupling effects of the mechanical and electric phenomena are presented by the generalized stress intensity factors for transversely isotropic piezoelectric materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号