首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Toward the development of new strategies for the synthesis of multiporphyrin arrays, we have prepared and characterized (electrochemistry and static/time-resolved optical spectroscopy) a series of dyads composed of a zinc porphyrin and a free base porphyrin joined via imine-based linkers. One dyad contains two zinc porphyrins. Imine formation occurs under gentle conditions without alteration of the porphyrin metalation state. Five imine linkers were investigated by combination of formyl, benzaldehyde, and salicylaldehyde groups with aniline and benzoic hydrazide groups. The imine-linked dyads are quite stable to routine handling. The excited-state energy-transfer rate from zinc to free base porphyrin ranges from (70 ps)(-)(1) to (13 ps)(-)(1) in toluene at room temperature depending on the linker employed. The energy-transfer yield is generally very high (>97%), with low yields of deleterious hole/electron transfer. Collectively, this work provides the foundation for the design of multiporphyrin arrays that self-assemble via stable imine linkages, have predictable electronic properties, and have comparable or even enhanced energy-transfer characteristics relative to those of other types of covalently linked systems.  相似文献   

2.
A new strategy is described and implemented for determining the rates of hole‐transfer between equivalent porphyrins in multiporphyrin architectures. The approach allows access to these rates between sites that are not the most easily oxidized components of the array. The specific architectures investigated with this new strategy are triads consisting of one zinc porphyrin (Zn) and two free base porphyrins (Fb). The triads employ a diphenylethyne linker ( ZnFbFbU ) and a phenylene linker ( ZnFbFbΦ ). The zinc porphyrin is selectively oxidized to produce Zn + FbFb, the free base porphyrins are excited to produce the excited‐state mixture Zn + Fb*Fb and Zn + FbFb*, and the subsequent dynamics are monitored by ultrafast absorption spectroscopy. The system evolves by a combination of energy‐ and hole‐transfer processes involving (adjacent and nonadjacent) zinc and free base porphyrin constituents that are complete within 100 ps of excitation; the rate constants of many of these processes are derived from prior studies of the oxidized forms of the benchmark dyads ( ZnFbU and ZnFbΦ ). One of the excited‐state decay channels produces the metastable state ZnFbFb + that decays to a second metastable state ZnFb + Fb by the target hole‐transfer process, followed by rapid hole transfer to produce the Zn + FbFb thermodynamic ground state of the system. The rate constant for hole transfer between the free base porphyrins in the oxidized ZnFbFb triads is found to be (0.5 ns)?1 and (0.6 ns)?1 across phenylene and diphenylethyne linkers, respectively. These rate constants are comparable to those recently measured, using a related but distinct strategy, for ground‐state hole transfer between zinc porphyrins in oxidized ZnZnFb triads. The two complementary strategies provide unique approaches for probing hole transfer between equivalent sites in multiporphyrin arrays, with the choice of method being guided by the particular target process and the ease of synthesis of the necessary architectures.  相似文献   

3.
The attachment of redox-active molecules such as porphyrins to an electroactive surface provides an attractive approach for electrically addressable molecular-based information storage. Porphyrins are readily attached to a gold surface via thiol linkers. The rate of electron transfer between the electroactive surface and the porphyrin is one of the key factors that dictates suitability for molecular-based memory storage. This rate depends on the type and length of the linker connecting the thiol unit to the porphyrin. We have developed different routes for the preparation of thiol-derivatized porphyrins with eight different linkers. Two sets of linkers explore the effects of linker length and conjugation, with one set comprising phenylethyne units and one set comprising alkyl units. One electron-deficient linker has four fluorine atoms attached directly to a thiophenyl unit. To facilitate the synthesis of the porphyrins, convenient routes have been developed to a wide range of aldehydes possessing a protected S-acetylthio group. An efficient synthesis of 1-(S-acetylthio)-4-iodobenzene also has been developed. A set of porphyrins, each bearing one S-acetyl-derivatized linker at one meso position and mesityl moieties at the three remaining meso positions, has been synthesized. Altogether seven new aldehydes, eight free base porphyrins and eight zinc porphyrins have been prepared. The zinc porphyrins bearing the different linkers all form self-assembled monolayers (SAMs) on gold via in situ cleavage of the S-acetyl protecting group. The SAM of each porphyrin is electrochemically robust and exhibits two reversible oxidation waves.  相似文献   

4.
A modular building-block approach has been developed for the construction of linear amphipathic porphyrin arrays. The reaction of meso-(trifluoromethyl)dipyrromethane and an aldehyde under the conditions of the two-step room temperature porphyrin synthesis affords the trans-substituted porphyrin (13-56% yields). A similar reaction with two different aldehydes provides access to porphyrins bearing two different functional groups. An ethyne porphyrin and an iodo porphyrin (either free base or zinc) are selectively joined via Pd(0)-catalyzed coupling reactions, affording a linear array with porphyrins in defined metalation states. Coupling of a zinc-porphyrin bearing iodo and ester groups with a free base porphyrin bearing ethyne and ester groups yielded the zinc-free base porphyrin dimer. Coupling of a bis-ethyne porphyrin with a porphyrin bearing iodo and ester groups afforded the porphyrin trimer. Cleavage of the esters yielded the amphipathic porphyrin dimer and trimer arrays. The arrays with adjacent zinc and free base porphyrins undergo efficient electronic energy transfer. Both amphipathic porphyrin arrays have been incorporated into L-alpha-phosphatidylcholine vesicles. This versatile synthetic strategy provides access to a family of porphyrin arrays for studies of photophysical processes in supramolecular assemblies.  相似文献   

5.
We present the rational design and synthesis of multiporphyrin arrays containing thiol-derivatized linkers for the purpose of multibit molecular information storage. Porphyrin dimers and trimers were synthesized by the Pd-mediated coupling of iodo-substituted and ethynyl-substituted porphyrin building blocks in 5-51% yields. Each porphyrin dimer bears one S-acetylthio group. The architecture of the trimers incorporates a trans-substituted porphyrin (central) bearing two S-acetylthio groups and two diphenylethyne-linked porphyrins (wings) in a trans geometry. The central porphyrin and the wing porphyrins bear distinct substituents and central metals, thereby affording different oxidation potentials. The S-acetylthio groups provide a means for attachment of the arrays to an electroactive surface. The dimers are designed for vertical orientation on an electroactive surface while the trimers are designed for horizontal orientation of the central porphyrin. Altogether seven different arrays were synthesized. Each array forms a self-assembled monolayer (SAM) on gold via in situ cleavage of the S-acetyl protecting group. The SAM of each array is electrochemically robust and exhibits multiple, reversible oxidation waves. In general, however, the trimeric arrays appear to form more highly ordered monolayers that exhibit sharper, better-defined redox features.  相似文献   

6.
The ability to incorporate distinct metalloporphyrins at designated sites in multiporphyrin arrays is essential for diverse applications in materials and biomimetic chemistry. The synthesis of such mixed-metal arrays via acid catalyzed reactions has largely been restricted to metalloporphyrins of stability class II (e.g., Cu, Co, Ni) or I. We describe routes for the rational synthesis of mixed-metal arrays via acid-catalyzed condensations that are compatible with metalloporphyrins of stability class III (e.g., Zn) and IV (e.g., Mg). The routes are demonstrated for p-phenylene-linked arrays. The key finding is that several mild Lewis acids [InCl(3), Sc(OTf)(3), Yb(OTf)(3), and Dy(OTf)(3)], which are known to catalyze the dipyrromethane + dipyrromethane-dicarbinol condensation in CH(2)Cl(2) at room temperature without acidolysis, do not demetalate zinc or magnesium porphyrins under the same conditions. Rational routes to porphyrin dyads and triads employ reaction of a (porphyrin)-dipyrromethane and a (porphyrin)-dipyrromethane-dicarbinol. The porphyrin-forming reactions (six examples) proceed in yields of 18-28%. The metalation states of the arrays prepared in this manner include Zn-free base (ZnFb), MgFb, ZnFbMg, ZnFbZn, and ZnFbFb. Studies of the catalysis process indicate that the dipyrromethane + dipyrromethane-dicarbinol condensation is catalyzed by both the Lewis acid and a Br?nsted acid derived in situ from the Lewis acid. Taken together, the ability to employ otherwise "acid-labile" metalloporphyrins as precursors in condensation procedures should broaden the scope of accessible mixed-metal multiporphyrin arrays and motivate further studies of the application of mild Lewis acid catalysts in porphyrin chemistry.  相似文献   

7.
To investigate new architectures for the self-assembly of multiporphyrin arrays, a one-flask synthesis of a shape-persistent cyclic hexameric array of porphyrins was exploited to prepare six derivatives bearing diverse pendant groups. The new arrays contain 6-12 carboxylic acid groups, 12 amidino groups, 6 thiol groups, or 6 thiol groups and 6 carboxylic acid groups in protected form (S-acetylthio, TMS-ethyl, TMS-ethoxycarbonyl). The arrays contain alternating Zn and free base (Fb) porphyrins or all Zn porphyrins. The one-flask synthesis entails a template-directed, Pd-mediated coupling of a p/p'-substituted diethynyl Zn porphyrin and a m/m'-substituted diiodo Fb porphyrin. The porphyrin building blocks (trans-A(2)B(2), trans-AB(2)C) contain the protected pendant groups at nonlinking meso positions. A self-assembled monolayer (SAM) of a Zn(3)Fb(3) cyclic hexamer containing one thiol group on each porphyrin was prepared on a gold electrode and the surface-immobilized architecture was examined electrochemically. Together, the work reported herein provides cyclic hexameric porphyrin arrays for studies of self-assembly in solution or on surfaces.  相似文献   

8.
Static and time-resolved optical measurements are reported for two cyclic hexameric porphyrin arrays and their self-assembled complexes with guest chromophores. The hexameric hosts contain zinc porphyrins and 0 or 3 free base (Fb) porphyrins (denoted Zn(6) or Zn(3)Fb(3), respectively). The guests are a tripyridyl arene (TP) and a dipyridyl-substituted free base porphyrin (DPFb), each of which coordinates to zinc porphyrins of a host via pyridyl-zinc dative bonding. Each architecture is designed to have an overall gradient of excited-state energies that affords excitation funneling within the host and ultimately to the guest. Collectively, the studies delineate the various pathways, mechanisms, and rate constants of energy flow among the weakly coupled constituents of the host-guest complexes. The pathways include downhill unidirectional energy transfer between adjacent chromophores, bidirectional energy migration between identical chromophores, and energy transfer between nonadjacent chromophores. The energy transfer to the lowest-energy chromophore(s) within the backbone of a hexameric host (Fb porphyrins in Zn(3)Fb(3) or pyridyl-coordinated zinc porphyrins in Zn(6)*TP and Zn(6)*DPFb) proceeds primarily via a through-bond mechanism; the transfer is rapid (approximately 40 ps depending on the array) and essentially quantitative (>or=98%). The energy transfer from a pyridyl-coordinated zinc porphyrin of the host to the Fb porphyrin guest in the Zn(6)*DPFb complex is almost exclusively F?rster through-space in nature; this process is much slower ( approximately 1 ns) and has a lower yield (65%). These studies highlight the utility of cyclic architectures for efficient light harvesting and energy transfer to a designated trapping site.  相似文献   

9.
Two new cyclic hexameric arrays of porphyrins have been prepared in a rational, convergent manner. The porphyrins in each cyclic hexamer are joined by diphenylethyne linkers affording a wheel-like array with a diameter of approximately 35 A. One array is comprised of five zinc (Zn) porphyrins and one free base (Fb) porphyrin (cyclo-Zn(5)FbU) while the other is comprised of an alternating sequence of two Zn porphyrins and one Fb porphyrin (cyclo-Zn(2)FbZn(2)FbU). The prior synthesis employed a one-flask template-directed process and afforded alternating Zn and Fb porphyrins or all Zn porphyrins. More diverse metalation patterns are attractive for manipulating the flow of excited-state energy in the arrays. The rational synthesis of each array employed three Pd-mediated coupling reactions with four tetraarylporphyrin building blocks bearing diethynyl, diiodo, bromo/iodo, or iodo/ethynyl groups. The final ring closure yielding the cyclic hexamer was achieved by reaction of a porphyrin pentamer + porphyrin monomer or the joining of two porphyrin trimers. In the presence of a tripyridyl template, the yields of the 5 + 1 and 3 + 3 reactions ranged from 10 to 13%. The 5 + 1 reaction in the absence of the template proceeded in 3.5% yield, thereby establishing the structure-directed contribution to cyclic hexamer formation. The 3 + 3 route relied on successive ethyne + iodo/bromo coupling reactions. One template-directed route to cyclo-Zn(2)FbZn(2)FbU employed a magnesium porphyrin, affording cyclo-Zn(2)FbZn(2)MgU from which magnesium was selectively removed. The arrays exhibit absorption spectra that are nearly the sum of the spectra of the component parts, indicating weak electronic coupling. Fluorescence spectroscopy showed that the quantum yield of energy transfer in toluene at room temperature from the Zn porphyrins to the Fb porphyrin(s) was 60% in cyclo-Zn(5)FbU and 90% in cyclo-Zn(2)FbZn(2)FbU. Two dipyridyl-substituted porphyrins, a Zn tetraarylporphyrin and a Fb oxaporphyrin, have been synthesized for use as guests in the cyclic hexamers, affording self-assembled arrays for light-harvesting studies.  相似文献   

10.
High-valency manganese (IV,V)-oxo porphyrins have been electrochemically generated and in situ spectrally characterized in multiporphyrin arrays, which were formed by an interfacial coordination reaction of Na2PdCl4 with manganese (III) tetrapyridylporphyrin (MnTPyP). Multilayers of the Pd-MnTPyP multiporphyrin arrays were obtained by the Langmuir-Blodgett (LB) method. The redox behaviors of manganese in the multiporphyrin arrays were pH-dependent. Spectroelectrochemical experiments revealed a reversible redox process between Pd-Mn(III)TPyP and its Mn(IV)-oxo species, but an irreversible process between Pd-Mn(III)TPyP and its Mn(V)-oxo species. The Pd-Mn(IV)TPyP multiporphyrin arrays could be spontaneously reduced to their Mn(III) complex, while the Pd-Mn(V)TPyP arrays were rather stable in basic solutions (pH > 10.5). However, when the Pd-Mn(V)TPyP multiporphyrin arrays were washed by or immersed in water, they were immediately reduced to their Mn(III) complex. Because these well-organized multiporphyrin arrays are of high thermal and chemical stability, they are potential molecular materials in the studies of natural and artificial catalytic processes as well as redox-based molecular switches.  相似文献   

11.
Polynorbornenes appended with porphyrins containing a range of different linkers are synthesized. The use of bisamidic chiral alanine linkers between the pending porphyrins and the polymeric backbone has been shown to bring the adjacent porphyrin chromophores to more suitable orientation for exciton coupling owing to hydrogen bonding between the adjacent linkers. The hydrogen bonding between the adjacent pendants in these polymers may induce a cooperative effect and therefore render single‐handed helical structures for these polymers. Such a cooperative effect is reflected in the enhancement of FRET efficiencies between zinc–porphyrin and free base porphyrin in random copolymers.  相似文献   

12.
The synthesis of linear multiporphyrin arrays with mono- and bisphosphine-substituted porphyrins as ligand donors and ruthenium(II) or rhodium(III) porphyrins as ligand acceptors is described. With appropriate amounts of the building blocks mixed, linear dimeric and trimeric arrays have been synthesized and analyzed by (1)H NMR and (31)P NMR spectroscopy. The Ru/Rh acceptor porphyrins can be located either at the periphery or in the center of the array. Likewise, the monophosphine porphyrins can be positioned at the periphery, thus allowing a high degree of freedom in the overall composition of the arrays. This way, both donor and acceptor porphyrins can act as chain extenders or terminators. One of the trimeric complexes with two nickel and one ruthenium porphyrin has also been analyzed by X-ray crystallography. Attempts have also been made to synthesize higher order arrays by mixing appropriate amounts of the porphyrins; however, from the NMR data it cannot be concluded if monodisperse five, seven, or nine porphyrin arrays are present or if the solutions are composed of a statistical mixture of smaller and larger arrays.  相似文献   

13.
Static and time-resolved optical measurements are reported for three cyclic hexameric porphyrin arrays and their self-assembled complexes with guest chromophores. The hexameric hosts contain zinc porphyrins and 0, 1, or 2 free base (Fb) porphyrins (denoted Zn(6), Zn(5)Fb, or Zn(4)Fb(2), respectively). The guest is a core-modified (O replacing one of the four N atoms) dipyridyl-substituted Fb porphyrin (DPFbO) that coordinates to zinc porphyrins of a host via pyridyl-zinc dative bonding. Each architecture is designed to have a gradient of excited-state energies for excitation funneling among the weakly coupled constituents of the host to the guest. Energy transfer to the lowest-energy chromophore(s) (coordinated zinc porphyrins or Fb porphyrins) within a hexameric host occurs primarily via a through-bond (TB) mechanism, is rapid ( approximately 40 ps), and is essentially quantitative (>or=98%). Energy transfer from a pyridyl-coordinated zinc porphyrin of the host to the guest in the Zn(6)*DPFbO complex has a yield of approximately 75%, a rate constant of approximately (0.7 ns)(-1), and significant F?rster through-space (TS) character. In the case of Zn(5)Fb*DPFbO, which has an additional TS route via the Fb porphyrin with a rate constant of approximately (20 ns)(-1), the yield of energy transfer to the guest is somewhat lower ( approximately 50%) than that for Zn(6)*DPFbO. Complex Zn(4)Fb(2)*DPFbO has an identical TS pathway via the Fb porphyrin plus an additional TS pathway involving the second Fb porphyrin (closer to the guest) with a rate constant of approximately (0.5 ns)(-1). This complex exhibits an energy-transfer yield to the guest that is significantly enhanced over that for Zn(5)Fb*DPFbO and comparable to that for Zn(6)*DPFbO. Collectively, the results for the various arrays suggest designs for similar host-guest complexes that are expected to exhibit much more efficient light harvesting and excitation trapping at the central guest chromophore.  相似文献   

14.
Masahiko Taniguchi 《Tetrahedron》2010,66(30):5549-5565
A series of (p-phenylene)n-linked meso-mesityl-substituted porphyrin dyads (n=2-4) was prepared via Suzuki coupling of zinc(II) and free base porphyrin building blocks. The resulting zinc(II)/free base porphyrin dyads were demetalated. The series of free base porphyrin dimers (n=1-4), four other porphyrin dimers (with p-phenylene, diphenylethyne or diphenylbutadiyne linkers; and aryl or tridec-7-yl meso substituents), and several benchmark monomers were converted to the thallium(III)chloride complexes under mild conditions. The collection of eight Tl(III)Cl/Tl(III)Cl dimers is designed for studies of ground-state hole-transfer processes and comparison with the excited-state energy- and hole-transfer processes of the corresponding Zn(II)/free base dyads. Altogether, 18 new porphyrin arrays and benchmark monomers have been prepared.  相似文献   

15.
Kin-ya Tomizaki 《Tetrahedron》2004,60(9):2011-2023
Four new porphyrin dyads have been prepared for studies in artificial photosynthesis. The two porphyrins are joined at the meso positions via a phenylethyne linker and are present in zinc/zinc or zinc/free base metalation states. The porphyrin bearing the ethynyl unit incorporates zero, one, or two pentafluorophenyl groups at non-linking meso positions for tuning the porphyrin redox potentials. The synthetic approach entailed Pd-mediated coupling of porphyrin building blocks that bear a single ethynylphenyl or bromo/iodo substituent.  相似文献   

16.
Ambroise A  Li J  Yu L  Lindsey JS 《Organic letters》2000,2(17):2563-2566
[reaction: see text]A shape-persistent cyclic array of six zinc porphyrins provides an effective host for a dipyridyl-substituted free base porphyrin, yielding a self-assembled structure for studies of light harvesting. Energy transfer occurs essentially quantitatively from uncoordinated to pyridyl-coordinated zinc porphyrins in the cyclic array. Energy transfer from the coordinated zinc porphyrin to the guest free base porphyrin is less efficient (phitrans approximately 40%) and is attributed to a F?rster through-space process.  相似文献   

17.
Molecular photonic wires, which absorb light and undergo excited-state energy transfer, are of interest as biomimetic models for photosynthetic light-harvesting systems and as molecular devices with potential applications in materials chemistry. We describe the stepwise synthesis of four molecular photonic wires. Each wire consists of an input unit, transmission element, and output unit. The input unit consists of a boron-dipyrrin dye or a perylene-monoimide dye (linked either at the N-imide or the C9 position); the transmission element consists of one or three zinc porphyrins affording short or long wires, respectively; and the output unit consists of a free base (Fb) porphyrin. The components in the arrays are joined in a linear architecture via diarylethyne linkers (an ethynylphenyl linker is attached to the C9-linked perylene). The wires have been examined by static absorption, static fluorescence, and time-resolved absorption spectroscopy. Each wire (with the exception of the C9-linked perylene wire) exhibits a visible absorption spectrum that is the sum of the spectra of the component parts, indicating the relatively weak electronic coupling between the components. Excitation of each wire at the wavelength where the input unit absorbs preferentially (typically 480-520 nm) results in emission almost exclusively from the Fb porphyrin. The static emission and time-resolved data indicate that the overall rate constants and quantum efficiencies for end-to-end (i.e., input to output) energy transfer are as follows: perylene-(N-imide)-linked short wire, (33 ps)(-1) and >99%; perylene-(C9)-linked short wire, (26 ps)(-1) and >99%; boron-dipyrrin-based long wire, (190 ps)(-1) and 81%; perylene-(N-imide)-linked long wire, (175 ps)(-1) and 86%. Collectively, the studies provide valuable insight into the singlet-singlet excited-state energy-transfer properties in weakly coupled molecular photonic wires.  相似文献   

18.
The review discusses various models of multiporphyrin arrays with ethyne, diyne, and E- and Z-enediyne linkers. The concept implying multivalence of such systems is considered. Porphyrin-ethynyl arrays are nanosize structures that are promising from the viewpoint of their application in up-to-date fields of medicine and technics, including design of biocomputers.  相似文献   

19.
Sonogashira coupling of zinc 5,10,15,20-tetraethynylporphyrin with various phenyl iodides under mild conditions afforded good yields of the corresponding zinc porphyrins. This method is applicable to a variety of aryl iodides including meso-substituted iodoporphyrin to form a conjugated star-shaped multiporphyrin. The UV-Vis spectra show that peak broadening, red shifts, and changes in the oscillator strength of absorptions increase with the extension of pi-conjugation. In the electrochemical measurements, the first oxidation of porphyrins 4-9 occurs at potentials in the range +0.89 to +1.08 V, which are comparable to that of ZnTPP (TPP = tetraphenylporphyrin). The first reduction was observed at potentials from -0.73 to -0.89 V, which is anodically shifted by 390-550 mV as compared to that of ZnTPP, and the second reduction occurs at potentials in the range -1.12 to -1.33 V. The para-substituted tetrakis(phenylethynyl)porphyrins show substituent effects on their redox chemistry and exhibit only slight substituent effects in their emission and absorption maxima.  相似文献   

20.
Tetraphenyl porphyrin substituted deoxyuridine was used as a building block to create discrete multiporphyrin arrays via site specific incorporation into DNA. The successful covalent attachment of up to 11 tetraphenyl porphyrins in a row onto DNA shows that there is virtually no limitation in the amount of substituents, and the porphyrin arrays thus obtained reach the nanometer scale (approximately 10 nm). The porphyrin substituents are located in the major groove of the dsDNA and destabilize the duplex by deltaT(m) 5-7 degrees C per porphyrin modification. Force-field structure minimization shows that the porphyrins are either in-line with the groove in isolated modifications or aligned parallel to the nucleobases in adjacent modifications. The CD signals of the porphyrins are dominated by a negative peak arising from the intrinsic properties of the building block. In the single strands, the porphyrins induce stabilization of a secondary helical structure which is confined to the porphyrin modified part. This arrangement can be reproduced by force-field minimization and reveals an elongated helical arrangement compared to the double helix of the porphyrin-DNA. This secondary structure is disrupted above approximately 55 degrees C (T(p)) which is shown by various melting experiments. Both absorption and emission spectroscopy disclose electronic interactions between the porphyrin units upon stacking along the outer rim of the DNA leading to a broadening of the absorbance and a quenching of the emission. The single-stranded and double-stranded form show different spectroscopic properties due to the different arrangement of the porphyrins. Above T(p) the electronic properties (absorption and emission) of the porphyrins change compared to room temperature measurements due to the disruption of the porphyrin stacking at high temperature. The covalent attachment of porphyrins to DNA is therefore a suitable way of creating helical stacks of porphyrins on the nanometer scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号