首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A novel fluorinated epoxy resin, 1,1-bis(4-glycidylesterphenyl)-1-(3′-trifluoromethylphenyl)-2,2,2-trifluoroethane (BGTF), was synthesized through a four-step procedure, which was then cured with hexahydro-4-methylphthalic anhydride (HMPA) and 4,4′-diaminodiphenyl-methane (DDM). As comparison, a commercial available epoxy resin, bisphenol A diglycidyl ether (BADGE), cured with the same curing agents was also investigated. We found that the BGTF gave the exothermic starting temperature lower than BADGE no mater what kind of curing agents applied, implying the reactivity of the former is higher than the latter. The fully cured fluorinated BGTF epoxy resins have good thermal stability with glass transition temperature of 170-175 °C and thermal decomposition temperature at 5% weight loss of 370-382 °C in nitrogen. The fluorinated BGTF epoxy resins also showed the mechanical properties as good as the commercial BADGE epoxy resins. The cured BGTF epoxy resins exhibited improved dielectric properties as compared with the BADGE epoxy resins with the dielectric constants and the dissipation factors lower than 3.3 and dissipation 2.8 × 10−3, respectively, which is related to the low polarizability of the C-F bond and the large free volume of CF3 groups in the polymer. The BGTF epoxy resins also gave low water absorption because of the existence of hydrophobic fluorine atom.  相似文献   

3.
The evolution of structure, and thermal and dynamic mechanical properties of a liquid crystalline epoxy during curing has been studied with differential scanning calorimetry (DSC), polarized optical microscopy, x-ray scattering, and dynamic mechanical analysis. The liquid crystalline epoxy was the diglycidyl ether of 4,4′-dihydroxy-α-methylstilbene (DGEDHMS). Two curing agents were used in this study: a di-functional amine, the aniline adduct of DGEDHMS, and a tetra-functional sulfonamido amine, sulfanilamide. The effects of curing agent, cure time, and cure temperature have been investigated. Isothermal curing of the liquid crystalline epoxy with the di-functional amine and the tetra-functional sulfonamido amine causes an increase in the mesophase stability of the liquid crystalline epoxy resin. The curing also leads to various liquid crystalline textures, depending on the curing agent and cure temperature. These textures coarsen during the isothermal curing. Moreover, curing with both curing agents results in a layered structure with mesogenic units aligned perpendicular to the layer surfaces. The layer thickness decreases with cure temperature for the systems cured with the tetra-functional curing agent. The glass transition temperature of the cured networks rises with increasing cure temperature due to the increased crosslink density. The shear modulus of the cured networks shows a strong temperature dependence. However, it does not change appreciably with cure temperature. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 2363–2378, 1997  相似文献   

4.
A novel imide ring and siloxane-containing cycloaliphatic epoxy compound 1,3-bis[3-(4,5-epoxy-1,2,3,6-tetrahydrophthalimido)propyl]tetramethyldisiloxane (BISE) was synthesized from 1,3-bis(3-aminopropyl)tetramethyldisiloxane and tetrahydrophthalic anhydride by a two-step procedure, which was then thermally cured with alicyclic anhydrides hexahydro-4-methylphthalic anhydride (HMPA) and hexahydrophthalic anhydride (HHPA), respectively. As comparison, a commercial available cycloaliphatic epoxy 3,4-epoxycyclohexylmethyl-3′,4′-epoxycyclohexane carboxylate (ERL-4221) cured with the same curing agents was also investigated. The experimental results indicated that the BISE gave the exothermic starting temperature higher than ERL-4221 no mater what kind of curing agents applied, implying the reactivity of the former is lower than the latter. The fully cured BISE epoxy resins have good thermal stability with thermal decomposition temperature at 5% weight loss of 346-348 °C in nitrogen, although they gave the relatively low glass transition temperatures due to the presence of flexible propyl and siloxane segments in the epoxy backbone. The BISE epoxy resins exhibited good mechanical and dielectric properties as well as low water absorption. The improved dielectric properties and the reduced water absorption of BISE epoxy resins are attributed to the low polarity as well as the hydrophobic nature of siloxane segment in the epoxy backbone.  相似文献   

5.
The effect of network structure on the glass transition temperature (T g) was examined by differential scanning calorimetry, thermomechanical analysis and dynamic thermomechanometry for epoxy resins cured with mixtures of curing agents consisting of an active ester, 1,3,5-triacetoxybenzene (TAB), and a polyfunctional phenol, 1,3,5-trihydroxybenzene (THB). Free hydroxyl groups are formed from THB after curing, whereas acetyl groups are left from TAB. TheT g value of cured epoxy resins decreased with increasing TAB content in the curing agent, which is attributed to the looser network structure induced by the steric hindrance of acetyl groups from TAB in the curing reaction and also to the weaker intermolecular interaction and the internal plasticization of acetyl groups from TAB.  相似文献   

6.
Vapor-grown carbon nanofibers (VGCNF) were functionalized with amine-containing pendants via a Friedel-Crafts acylation reaction with 4-(3-aminophenoxy)benzoic acid. The resulting H2N-VGCNF was treated with epichlorohydrin, followed by sodium hydroxide solution to afford N,N-diglycidyl-modified VGCNF that is designated as epoxy-VGCNF. Subsequently, epoxy-VGCNF was dispersed in an epoxy resin (Epon 862) with the aid of acetone and sonication. After acetone had been removed under vacuum from the mixture, curing agent “W” was added to epoxy-VGCNF/Epon 862 mixture, which was then poured into molds and cured at 250 °F (121 °C) for 2 h and 350 °F (177 °C) for 2 h to form a series of epoxy/fVGCNF samples; fVGCNF designated for “functionalized VGCNF” was used to denote our belief that all epoxy functions have reacted in the resulting nanocomposites. The VGCNF content was increased from 0.10 to 10.0 wt%. For comparison purposes, the pristine VGCNF or pVGCNF (0.1-5.0 wt%) was also used in the in situ polymerization of Epon 862 and curing agent “W” to afford another series of epoxy/pVGCNF samples. The epoxy-VGCNF showed a better dispersion in the epoxy resin than pVGCNF according to SEM results. Both the tensile moduli and strengths of epoxy/fVGCNF nanocomposites are higher than those of epoxy/pVGCNF. The additive effect of VGCNF on glass-transition (Tg) was discussed in terms of thermal analysis results. The thermal stability of the nanocomposites was investigated by thermogravimetric analysis (TGA).  相似文献   

7.
Diglycidyl ether of 4,4′-dihydroxybiphenol (BPDGE) is a liquid crystalline epoxy. The biphenyl epoxy (diglycidyl ether of 3,3′,5,5′-tetramethyl-4,4′-biphenyl, TMBPDGE) has found great applications in plastic encapsulated semiconductor packaging. Phenol novolac (PN) was used as curing agent. The reaction kinetics of BPDGE/PN and TMBPDGE/PN systems in the presence of triphenylphosphine (TPP) were characterized by an isoconversional method under dynamic conditions using differential scanning calorimetry (DSC) measurements. The results showed that the curing of epoxy resins involves different reaction stages and the values of activation energy are dependent on the degree of conversion. The effects of curing temperature on their phase structure have been investigated with polarized optical microscopy and Wide-angle X-ray diffraction. With proper curing process, BPDGE showed a nematic phase when cured with PN.  相似文献   

8.
The characteristics of epoxy/(Ba0.8Sr0.2)(Ti0.9Zr0.1)O3 (BSTZ) composites are investigated for the further application in embedded capacitor device. The effects of BSTZ ceramic powder filler ratio on the chemical, physical and dielectric properties of epoxy/BSTZ composites are studied. Differential scanning calorimeter (DSC) thermal analysis is conducted to determine the optimum values of hardener agent, curing temperature, reaction heat, and glass transition temperature (Tg). The hardener reaction process starts at about 115 °C and completes at about 200 °C, for that it is appropriate to process of epoxy/BSTZ composites in the range of temperature. The highest glass transition temperature (Tg) of 155 °C is obtained at one equivalent weight ratio (hardener/epoxy). Only the BSTZ phase can be detected in the XRD patterns of epoxy/BSTZ composites. The more BSTZ ceramic powder is mixed with epoxy, the higher crystalline intensity of tetragonal BSTZ phase are revealed in the XRD patterns. The dielectric constant measured at 1 MHz increases from 5.8 to 23.6 as the content of BSTZ ceramic powder in the epoxy/BSTZ composites increases from 10 to 70 wt%. The loss tangents of the epoxy/BSTZ composites slightly increase with the increase of measurement frequency.  相似文献   

9.
Aminimide compounds ( 1–4 ) thermally generating isocyanates and tertiary amines were found to be excellent curing agents for epoxy resin. Tensile behavior, glass transition temperature, and degree of curing for the combination of EPIKOTE 828 prepolymer with a series of curing agents ( 1–4 ) are reported. The resins exhibit a large elongation at breakage and a high fracture energy per unit volume. The epoxy resins (EP-AI) cured with 3 or 4 containing no hydroxyl group showed larger ultimate elongations (up to 15%) and higher fracture energies (ca. 8 J/cm3) than the resins (EP–AIOH) cured with 1 or 2 . The curing reaction depends on the structure of aminimide (presence of hydroxyl group and generation of mono- or bisisocyanates). The origin of toughness and dependence of physical properties on the curing condition and the structure of aminimides were discussed. It was concluded that relatively slow curing at elevated temperature controlled by thermal decomposition of aminimides was a reason for the toughness.  相似文献   

10.
利用生物来源的二聚脂肪酸为原料,合成了二聚酸酰肼和二聚酸酰腙两种衍生物,并进一步以其作为环氧E-44树脂固化剂,得到了新型的含动态共价连接的热固性环氧树脂。采用傅里叶红外光谱(FT-IR)、差式扫描量热(DSC)、扫描电子显微镜(SEM)、热重(TG)和动态力学分析(DMA)等多种测试手段对环氧树脂固化过程以及固化后材料的结构与性能关系进行了详细表征,特别研究了动态亚胺键对热固性环氧树脂性能的独特影响。结果表明:与传统环氧树脂相比,改性后的环氧树脂有更好的韧性,且其玻璃化转变温度及热稳定性没有明显下降。在升温和加压的条件下,酸可催化亚胺键的动态交换反应,赋予传统环氧树脂以全新的可修复、可回收与可多次加工性能。  相似文献   

11.
Aromatic liquid crystalline epoxy resin (LCE) based on naphthalene mesogen was synthesized and cured with aromatic diamines to prepare heat‐resistant LCE networks. Diaminodiphenylester (DDE) and diaminodiphenylsulfone (DDS) were used as curing agents. The curing reaction and liquid crystalline phase of LCE were monitored, and mechanical and thermal properties of cured LCE network were also investigated. Curing and postcuring peaks were observed in dynamic DSC thermogram. LCE network cured with DDE displayed liquid crystalline phase in the curing temperature range between 183 and 260°C, while that cured with DDS formed one between 182 and 230°C. Glass transition temperature of cured LCE network was above 240°C, and crosslinked network was thermally stable up to 330°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 419–425, 1999  相似文献   

12.
A novel hyperbranched polyphosphate ester (HPPE) was synthesized via the polycondensation of bisphenol-A as an A2 monomer and phosphoryl trichloride as a B3 monomer at 100 °C, without gelation. The initial molar ratio of A2 to B3 was set to be 1.5:1. The final product was precipitated from methanol. 31P NMR spectroscopy was used to monitor the reaction. The formed HPPE was characterized by FTIR and 1H NMR to confirm its end groups. Differential scanning calorimetry data revealed that the cured bisphenol-A epoxy resin with HPPE as a curing agent possessed improved glass transition temperature. Dynamic mechanical thermal analysis also showed the increase in the glass transition temperature. The thermal degradation properties and flame retardancy were investigated by thermogravimetric analysis and limiting oxygen index (LOI). The results showed that the incorporation of HPPE into bisphenol-A epoxy resin increased its thermal stability and char yield during the decomposition by raising the second stage decomposition temperature. The LOI value increased from 23 to 31 when HPPE, instead of bisphenol-A, was used as a curing agent.  相似文献   

13.
The curing agents of epoxy resin, trimethylsilyl ethers of phenol novolak (TMSPN) and cresol novolak (TMSCN) were prepared by refluxing phenol novolak and cresol novolak respectively, with the mixture of hexamethyldisilazane and chlorotrimethylsilane in THF. The curing reaction of epoxy resin with these curing agents and the thermal properties of cured resins were examined. The Tg values of epoxy resins cured with TMSPN were a little higher than those cured with TMSCN. The maximum of Tg is 118°C for TMSPN-cured epoxy resin against 112°C for TMSPN-cured epoxy resin. The water absorption of hydrophobic epoxy resins cured with TMSPN was a little lower than those cured with TMSCN. The clear decrease of water absorption is attributed to the difficulty of the micro-void formation caused by the more tight primary structures of TMSPN. The water absorption at 25°C containing trimethylsilyl groups is about one-tenth of that of epoxy resins cured with conventional curing agents and even one-half of that of the epoxy resins cured with active esters. The low water absorption is attributed to the presence of trimethylsilyl groups, which are more hydrophobic than ester groups, and to the absence of hydroxyl groups of the cured resins. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
环氧树脂与氰酸酯共固化产物性能的研究   总被引:15,自引:0,他引:15  
环氧树脂是一类综合性能优良并获广泛应用的热固性树脂基体 .但是通常的环氧树脂基体中含有大量反应生成的羟基等极性基团 ,吸湿率高 ,使其复合材料在湿热环境下力学性能和介电性能显著下降 .应用氰酸酯改性固化的环氧树脂等热固性树脂 ,将赋予以其为基体的复合材料以优异的耐热性能、力学性能和介电性能[1 ,2 ] .这类复合材料的研究开发对特种电子电气绝缘材料和先进复合材料的发展具有重要意义 .作者曾应用FT IR、DSC等分析技术对氰酸酯与环氧树脂 (氰酸酯在欠量、适量和过量条件下 )的共固化反应机理和固化物结构特征等进行过深入…  相似文献   

15.
Abstract

To study the effect of water affinity of the cured epoxy resin on water sorption and permeation in the cured epoxy resin, a novel hardener (esterfied phenol novolac was synthesized and used for obtaining the cured product without free hydroxyl group. Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FT-IR) were used to study the cure kinetics of o-cresol novolac epoxy resin using esterfied phenol novolac resin as curing agent in the presence of 2-methylimidazole as accelerator. Some kinetic parameters of the curing reaction such as the reaction order, activation energy, and frequency factor were obtained in the temperature range studied. The results show that this curing process is a first-order kinetic mechanism, which was different with that cured with phenol novolac resin.  相似文献   

16.
Bimetallic Ni-Cu particles were synthesized from either suspensions of nickel carbonate and copper carbonate, and solutions of nickel nitrate and copper nitrate in ethylene glycol which acts both as solvent and reducing agent. The nature and composition of the powders depend on both the reaction temperature and time, and the reactants. Using the carbonates, bimetallic Ni-Cu powders composed of a nickel-rich and a copper-rich solid solution were obtained after 39 h at 140°C. Increasing the reaction temperature to 190°C gives a Ni-Cu powder composed of a copper-rich solid solution and nickel. Particles obtained under these conditions, however, are polydisperse. The nitrate solution gave bimetallic Ni-Cu particles with a narrow size distribution of about 140 nm after 4 h of reaction at 196°C. These particles are made of a copper core and a nickel shell. The mechanism of bimetallic particle formation is controlled by the solubility of the reactants, the formation of intermediate metal glycolates and Cu2O, and the required reduction temperature.  相似文献   

17.
The kinetic of the curing process in the ethylenediamine (EDA)-poly (bisphenol A-co-epichlorohydrin) glycidyl end-capped (DGEBA) mixture modified with poly(ethylene oxide) (PEO) was studied. The epoxy component was labeled with a fluorescence group (dansyl) treating the DGEBA with the reactive dansyl derivative DNS-EDA. Dynamic DSC experiments were carried out and from their results the effect of the PEO composition on the epoxy curing was discussed. Furthermore, the effect of cure temperature and PEO composition on the morphology and crystallinity of the blend were studied as well. The morphologic study was carried out using complementarily optical transmission (TOM) and epifluorescence (EFM) microscopy. It was observed that: i) the addition of a non-reactive thermoplastic leads to a dilution effect of the reactive groups and therefore a decrease of the epoxy amine reaction rate; ii) the PEO composition does not seem to affect the non catalyzed process of the epoxy curing, while an increase in the PEO fraction within the epoxy/PEO mixture seems to change the mechanism of the cure reaction; iii) dynamic DSC scans, TOM and EFM images and steady state fluorescence spectra of the cured samples suggest that when the curing temperature increases there is an increase in the miscibility between PEO and the epoxy-amine reaction mixture; and iv) a reduction in the PEO/cured epoxy miscibility as the fraction of PEO increases was observed.  相似文献   

18.
Cyanoacetamides are a novel class of curing agents for epoxy resins. Since reaction products of epoxy compounds with cyanoacetamides have not yet been described, we investigated the reaction of phenyl-glycidylether (PGE) and N-isobutylcyanoacetamide (NICA) under the conditions of the epoxy cure (120–150°C). Twenty-two fractions of the reaction product have been separated by preparative TLC and characterized by FD and MS mass spectroscopy. The structures of 10 reaction product have been elucidated by MS, NMR, and IR techniques. They belong to the classes of cyclic urethanes, spiro-dilactones, cyclo-oxa-1-hepten-4-one-2, pyrimidones, aminocrotononitrile, and tertiary amine. This complex model reaction mixture does not enable us to propose a curing mechanism. However practical cure of Bisphenol A diglycidylether (BADGE) yields clear and tough solids with a glass transition temperature up to 200°C, good mechanical strength, and high adhesion to metal surface. Cyanoacetamides are latent hardeners requiring a curing initiator. Since N-4-chlorophenyl-N′-dimethylurea is a latent initiator, liquid, homogeneous, storage stable “one shot” systems can be formulated which harden quickly above 120°C. Heat aging properties of cured specimens are reported. A series of novel liquid, resinous, and crystalline cyanoacetamides and their potential as curing agent are described.  相似文献   

19.
A new inorganic/organic hybrid material containing silsesquioxane was prepared by the reaction of caged octa (aminopropyl silsesquioxane) (POSS-NH(2)) with n-butyl glycidyl ether (nBGE) and 1,4-butanediol diglycidyl ether (BDGE). The copolymers of POSS, nBGE, and BDGE could be obtained with varied feed ratio of POSS-NH(2), nBGE, and BDGE in the preparation. The hybrid material was added into an epoxy resin (E51) for enhancing the toughening and thermal properties of the epoxy resin. The results showed that the toughening and the thermal properties of the cured epoxy resin were greatly improved by the addition of the hybrid. The enhancement was ascribed to nano-scale effect of the POSS structure and the formation of anchor structure in the cured network. The investigation of kinetics for the curing process of the hybrid-modified epoxy resin revealed that two kinds of curing reactions occurred in different temperature ranges. They were attributed to the reactions between amino groups of the curing agent with epoxy groups of E51 and with residue epoxy groups in the hybrid. The reacting activation energies were calculated based on Kissinger's and Flynn-Wall-Ozawa's methods, respectively.  相似文献   

20.
The unique polymeric silsesquioxane/4,4′-diglycidyether bisphenol A (DGEBA) epoxy nanocomposites have been prepared by sol-gel method. The structure of nanocomposites was characterized by attenuated total reflectance (ATR) and solid state 29Si NMR. The characteristic intensity of trisubstituted (T) structure was higher than that of tetrasubstituted (Q) structure from solid state 29Si NMR spectra of 3-isocyanatopropyltriethoxysilane (IPTS) modified epoxy. The activation energies of curing reaction of epoxy system and IPTS modified epoxy system are 28-66 kJ/mol and 57-75 kJ/mol, respectively, by Ozawa’s and Kissinger’s methods. The triethyoxysilane side chain of IPTS modified epoxy might interfere the curing reaction of epoxy/amine and increase the activation energy of curing. The thermal degradation of nanocomposites was investigated by Thermogravimetric analysis (TGA). The char yield of nanocomposites was proportional to the 2-(diphenylphosphino)ethyltriethoxysilane (DPPETES) moiety content at high temperature. A higher char content could inhibit thermal decomposition dramatically and enhance the thermal stability. Moreover, the nanocomposites possess high optical transparency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号