首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we report a new strategy for the preparation of surface-enhanced Raman scattering (SERS)-active silver nanoparticles (Ag NPs), using a photochemical method and the presence of chitosan (Ch). First, Ag substrates were subjected to electrochemical oxidation/reduction cycles (ORCs) in deoxygenated aqueous solutions containing 0.1 M HNO3 and 1 g L−1 Ch (pH 6.9, adjusted by adding 1 M NaOH), resulting in Ag+–Ch complexes. These substrates were then irradiated with UV light at various wavelengths to yield the SERS-active Ag NPs. A stronger SERS effect was observed on the SERS-active Ag NPs prepared by using UV irradiation at 310 nm. The pH of the solution and the presence of Ch during the preparation process both affected the resulting SERS activities.  相似文献   

2.
This paper reports on the preparation, characterization and stealthiness of superparamagnetic nanoparticles (magnetite Fe3O4) with a 5 nm diameter and stabilized in water (pH ? 6.5) by a shell of water-soluble poly(ethylene oxide) (PEO) chains. Two types of diblock copolymers, i.e., poly(acrylic acid)-b-poly(ethylene oxide), PAA-PEO, and poly(acrylic acid)-b-poly(acrylate methoxy poly(ethyleneoxide)), PAA-PAMPEO, were prepared as stabilizers with different compositions and molecular weights. At pH ? 6.5, the negatively ionized PAA block interacts strongly with the positively-charged nanoparticles, thus playing the role of an anchoring block. Aggregates of coated nanoparticles were actually observed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The hydrodynamic diameter was in the 50-100 nm range and the aggregation number (number of nanoparticles per aggregate) was lying between several tens and hundred. Moreover, the stealthiness of these aggregates was assessed “in vitro” by the hemolytic CH50 test. No response of the complement system was observed, such that biomedical applications can be envisioned for these magnetic nanoparticles. Preliminary experiments of magnetic heating (10 kA/m; 108 kHz) were performed and specific absorption rate varied from 2 to 13 W/g(Fe).  相似文献   

3.
Tm3+/Yb3+ codoped rod-like YF3 nanocrystals were synthesized through a facile hydrothermal method. After annealing in an argon atmosphere, the nanocrystals emitted bright blue and intense ultraviolet (UV) light under a 980-nm continuous wave diode laser excitation. Up-conversion emissions centered at ∼291 nm (1I6 → 3H6), ∼347 nm (1I6 → 3F4), ∼362 nm (1D2 → 3H6), ∼452 nm (1D2 → 3F4), ∼476 nm (1G4 → 3H6), ∼642 nm (1G4 → 3F4), and ∼805 nm (3H4 → 3H6) were recorded using a fluorescence spectrophotometer. Especially, enhanced UV emissions were studied by changing Yb3+/Tm3+ doping concentrations, the annealing temperatures, and the excitation power densities. A possible mechanism, energy transfer-cross relaxation-energy transfer (ET-CR-ET), was proposed based on a simple rate-equation model to elucidate the process of the enhanced UV emissions.  相似文献   

4.
One-pot synthesis of magnetic nanogels with excellent biocompatibility via the photochemical method is reported in this paper. Poly(PEGMA) modified superparamagnetic nanogels (poly(PEGMA) magnetic nanogels) were synthesized by in-situ polymerization using poly(ethylene glycol) methacrylate (PEGMA) as the monomer and N, N′-methylene-bis-(acrylamide) (MBA) as the cross-linking agent in magnetite aqueous suspension under UV irradiation. The surface functional groups and components of magnetic nanogels were analyzed by Fourier transform infrared spectroscopy (FTIR) and a thermogravimetric analyzer (TGA). The results indicated that the poly(PEGMA) magnetic nanogels were synthesized successfully by coating poly(PEGMA) on the Fe3O4 nanoparticles under UV irradiation, and the Fe3O4 nanoparticles content in this nanogels was above 50 wt%. The morphology, size, zeta-potential and magnetic property were also characterized. The magnetic nanogels had a nearly spherical shape and core-shell structure, the average size in aqueous system measured by photon correlation spectroscopy (PCS) was 68.4 nm, which was much bigger than that in the dry state, the nanogels behaved superparamagnetically with saturated magnetization of 58.6 emu/g, and the zeta-potential was −16.3–−17.3 mV at physiological pH (6.8–7.4) which could help to maintain stability in blood. The preliminary application as drug carrier was made and the doxorubicin-loaded magnetic nanogels had an excellent property in slow-release. The experiment indicated that the magnetic nanogel was an ideal candidate carrier in target drug delivery systems and other biomedical application. Supported by the Natural Science Foundation of Shandong Province (Grant No. Q2006F01), Scientific and Technological Project of Shandong Province (Grant No. 2007GG3WZ02066) and Scientific and Technological Project of Department of Education, Shandong (Grant No. J07WC01)  相似文献   

5.
Terthiophene-appended gold nanoparticles were prepared by the reduction of AuCl4(C8H17)4N+ with NaBH4 in the presence of bis[2,5-di(3-hexylthiophen-2-yl)thiophene-3-carboxyloxyhexanyl]disulfide. A hexagonal self-assembly of particles with gold core diameters (1.9±0.1 nm) was detected by high-angle annular dark-field scanning transmission electron microscopy. The electric conductivity of the iodine-doped film was 9.1×10−6 S cm−1, which was ascribable to the terthiophene-based inter-ligand π-π interactions. The Au/terthiophene hybrid spin-coated film consisted of a highly three-dimensional assembled structure of terthiophenes, as inferred from grazing-incidence small-angle X-ray scattering, indicating that such monodispersed and small-sized gold nanoparticles can serve as a template for this organization. In this study, a gold nanoparticle-templated assembly of oligothiophenes has been fabricated for proposing a method to develop tailor-made organizations of π-conjugated oligomers.  相似文献   

6.
Gold nanoparticles are known for their plasmon resonance absorption (PRA) depending on their size. Our this investigation shows that plasma resonance light scattering (PRLS) signals in the corresponding PRA region could be measured using a common spectrofluorometer, and be enhanced when aggregation of gold nanoparticles occurs due to their interaction with organic small molecules (OSMs). Using captopril (Cap) as an example, we investigated the interactions of gold nanoparticles with OSMs in order to propose a general method of OSMs such as typical clinic organic drugs. In aqueous medium of pH 2.09, there are about 2.2 × 103 Cap molecules covalently binding to the surface of a 10-nm diameter gold nanoparticle through the thiol functional group of Cap, and thus forms a core-shell assembly of [(Au)31000]@[(Cap)2200], displaying strong enhanced PRLS signals in the PRA region of gold colloid. The PRLS intensities characterized at 553.0 nm were found to be proportional to the concentration of Cap over the range of 0.1-1.7 mg L−1 with the determination limit (3σ) of 32.0 μg L−1. With that, Cap in pharmaceutical preparations could be determined with the recovery of 97.0-104.5% and R.S.D. of less than 2.4%.  相似文献   

7.
Gold icosahedra with an average diameter of about 600 nm were easily prepared by heating an aqueous solution of the amphiphilic block copolymer, poly(ethylene oxide)20-poly(propylene oxide)70-poly(ethylene oxide)20 (Pluronic P123), and hydrogen tetrachloroaurate(III) trihydrate (HAuCl4·3H2O) at 60 °C for 25 min. When sodium chloride (NaCl:HAuCl4 molar ratio=10:1) was added to this aqueous solution, gold nanoplates were produced. The chloride ion was found to be a key component in the formation of the gold nanoplates by facilitating the growth of {111} oriented hexagonal/triangular gold nanoplates, because similar gold nanoplates were produced when LiCl or KCl was added to the aqueous solution instead of NaCl, while gold nanocrystals having irregular shapes were produced when NaBr or NaI was added.  相似文献   

8.
Template synthesis of various morphological gold colloidal nanoparticles using a thermoresponsive and pH-responsive coordination triblock copolymer of poly(ethylene glycol)-b-poly(4-vinylpyridine)-b-poly(N-isopropylacrylamide) is studied. The template morphology of the thermoresponsive and pH-responsive coordination triblock copolymer, which can be tuned by simply changing the pH or temperature of the triblock copolymer aqueous solution, ranges from single chains to core-corona micelles and further to micellar clusters. Various morphological gold colloidal nanoparticles such as discrete gold nanoparticles, gold@polymer core-shell nanoparticles, and gold nanoparticle clusters are synthesized on the corresponding template of the triblock copolymer by first coordination with gold ions and then reduction by NaBH4. All three resultant gold colloidal nanoparticles are stable in aqueous solution, and their sizes are 2, 10, and 7 nm, respectively. The gold@polymer core-shell nanoparticles are thermoresponsive. The gold nanoparticle cluster has a novel structure, and each one holds about 40 single gold nanoparticles.  相似文献   

9.
Copolymeric nanoparticles of methyl methacrylate (MMA) and N-vinylcaprolactam (VCL) were prepared through free radical polymerization using hydrogen peroxide and l-ascorbic acid as a redox initiator in o/w microemulsion containing sodium dodecyl sulphate (SDS). The copolymers were characterized by FTIR and gel permeation chromatography (GPC) and composition of copolymer was determined by 1H NMR spectroscopy. Reactivity ratio was determined by linear least square and non-linear least square methods. The morphology and particle size distribution of copolymer latexes was determined through transmission electron microscopy (TEM) and dynamic light scattering (DLS). Copolymers were of less than 50 nm size with spherical morphology and latexes were stable for more than 6 months. Phase transition temperature measured through UV-vis spectrometry, for the synthesized copolymer indicates their potential use in biosensors and targeted drug delivery system. Cytotoxicity of nanoparticles was determined by MTT assay on B16F10 melanoma cell lines. Cell viability data shows the IC50 values of copolymeric nanoparticles to be in the range of 0.01-0.1 mg/mL.  相似文献   

10.
The high quenching efficiency of metal nanoparticles has facilitated its use as quenchers in molecular beacons. To optimize this system, a good understanding of the many factors that influence molecular beacon performance is required. In this study, molecular beacon performance was evaluated as a function of gold nanoparticle size and its immobilization characteristics. Gold nanoparticles of 4 nm, 15 nm and 87 nm diameter, were immobilized onto glass slides. Each size regime offered distinctive optical properties for fluorescence quenching of molecular dyes that were conjugated to oligonucleotides that were immobilized to the gold nanoparticles. Rigid double stranded DNA was used as a model to place fluorophores at different distances from the gold nanoparticles. The effect of particle size and also the immobilization density of nanoparticles was evaluated. The 4 nm and 87 nm gold nanoparticles offered the highest sensitivity in terms of the change in fluorescence intensity as a function of distance (3-fold improvement for Cy5). The optical properties of the molecular fluorophore was of significance, with Cy5 offering higher contrast ratios than Cy3 due to the red-shifted emission spectrum relative to the plasmon peak. A high density of gold nanoparticles reduced contrast ratios, indicating preference for a monolayer of immobilized nanoparticles when considering analytical performance. Molecular beacon probes were then used in place of the double stranded oligonucleotides. There was a strong dependence of molecular beacon performance on the length of a linker used for attachment to the nanoparticle surface. The optimal optical performance was obtained with 4 nm gold nanoparticles that were immobilized as monolayers of low density (5.7 × 1011 particles cm−2) on glass surfaces. These nanoparticle surfaces offered a 2-fold improvement in analytical performance of the molecular beacons when compared to other nanoparticle sizes investigated. The principles developed in this study would assist in the design of solid phase molecular beacons using gold nanoparticles.  相似文献   

11.
CeO2 nanoparticles have been proven to be competent photocatalysts for environmental applications because of their strong redox ability, nontoxicity, long-term stability, and low cost. We have synthesized CeO2 nanoparticles via solution combustion method using ceric ammonium nitrate as an oxidizer and ethylenediaminetetraacetic acid (EDTA) as fuel at 450 °C. These nanoparticles exhibit good photocatalytic degradation and antibacterial activity. The obtained product was characterized by various techniques. X-ray diffraction data confirms a cerianite structure: a cubic phase CeO2 having crystallite size of 35 nm. The infrared spectrum shows a strong band below 700 cm−1 due to the Ce−O−Ce stretching vibrations. The UV/Vis spectrum shows maximum absorption at 302 nm. The photoluminescence spectrum shows characteristic peaks of CeO2 nanoparticles. Scanning electron microscopy (SEM) images clearly show the presence of a porous network with a lot of voids. From transmission electron microscopy (TEM) images, it is clear that the particles are almost spherical, and the average size of the nanoparticles is found to be 42 nm. CeO2 nanoparticles exhibit photocatalytic activity against trypan blue at pH 10 in UV light, and the reaction follows pseudo first-order kinetics. Finally, CeO2 nanoparticles also reduce CrVI to CrIII and show antibacterial activity against Pseudomonas aeruginosa.  相似文献   

12.
Novel dipeptide-grafted polymeric nanoparticles were prepared by grafting the dipeptide (Gly-Gly) to a block copolymer backbone, comprised of styrene-alt-(maleic anhydride) and styrene. In aqueous solution PSt130-b-P(St-alt-MAn)58-g-GlyGly26 formed stable dispersed spherical aggregates of ca. 75 nm. The critical micelle concentration for the dipeptide-grafted block copolymer self-aggregates was 6.3 × 10−3 mg mL−1. The zeta-potential of the aggregates was estimated experimentally. The dispersed polymer nanoparticles effectively self-organized to form stable nanoparticle thin films on hydrophobic solid surfaces, such as octadecyltrichlorosilane modified glass (OTS-G). As the ionic strength and temperature of the polymer suspension increased the surface coverage of the nanoparticle film increased and its hydrophobicity (water contact angle) decreased. Significantly less bovine serum albumin (BSA) adsorbed to nanoparticles modified surfaces with compared OTS-G surfaces. Diglycine grafted polymer nanoparticles have the potential to be used as a novel platform to study protein-protein interactions and to control fouling.  相似文献   

13.
A systematic investigation of UV photochemical vapor generation (photo-CVG) and its potential application for seven typical hydride-forming elements (As, Sb, Bi, Te, Sn, Pb and Cd) when combined with atomic fluorescence spectrometry (AFS) detection is presented. These analyte ions were converted to volatile species following UV irradiation of their aqueous solution to which low molecular weight organic acids (such as formic, acetic or propionic acid) had been added, and introduced to an atomic fluorescence spectrometer for subsequent analytical measurements. The experimental conditions for photo-CVG and the interferences arising from concomitant elements were carefully investigated. Limits of detection as low as 0.08, 0.1, 0.2 and 0.5 ng mL− 1 were obtained for Te, Bi, Sb and As, respectively, comparable to those by hydride generation-AFS. The RSDs obtained with the proposed method for these elements were better than 5% at 50 ng mL− 1. It is noteworthy that the presence of TiO2 nanoparticles combined with UV irradiation remarkably enhances the CVG efficiencies of Se(VI) and Te(VI), which cannot form hydrides with KBH4/NaBH4. Moreover, photo-CVG has a greater tolerance toward interferences arising from transition elements than hydride generation, and this facilitates its application to the analysis of complicated sample matrices.  相似文献   

14.
Wang CY  Hu XY 《Talanta》2005,67(3):625-633
Benorilate was determined by the differential pulse voltammetry (DPV) using a carbon paste electrode modified by silver nanoparticles in 1.25 × 10−3 mol l−1 KH2PO4 and Na2HPO4 buffer solution (pH = 6.88, 25 °C) .The anodic peak potential was +0.970 V (versus SCE). A good linear relationship was realized between the anodic peak currents and benorilate concentrations in the range of 1.0 × 10−7 to 2.5 × 10−4 mol l−1 with the detection limit of 1.0 × 10−8 mol l−1. The recovery was 95.2-103.6% with the relative standard deviation of 3.6% (n = 9). The pharmaceutical preparations, benorilate tablets samples and its metabolite (salicylic acid) in urine were determined with the desirable results.  相似文献   

15.
The well-defined phenylazo indazole-terminated polystyrene (PS) was successfully prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization of styrene (St) mediated by a novel chain transfer agent (CTA) bearing phenylazo indazole moieties in the Z group, benzyl-5-(4-(dimethylamino)phenylazo) indazole-1-carbodithioate (BPCD). The fluorescence emission of BPCD and the phenylazo indazole-terminated PS in chloroform (CHCl3) before and after the 365 nm ultraviolet irradiation was investigated. Interestingly, the fluorescence intensities of BPCD and the phenylazo indazole-terminated PS in CHCl3 were both sensitive to the 365 nm ultraviolet irradiation. The fluorescence intensities of these solutions increased with the irradiation time and reached maximum at 110 min. The light-driven fluorescence enhancement of BPCD and the phenylazo indazole-terminated PS were both attributed to the formation of spherical aggregate originated from the trans-cis isomerization of azobenzene moieties in BPCD and PS chain, which was confirmed by transmission electron microscopy (TEM), 1H NMR, UV and dynamic light scattering (DLS) spectra.  相似文献   

16.
Y2O3:Eu3+ (5 mol% Eu3+) and Y2O3:Eu3+ (5 mol% Eu3+) containing 1 mol% of Ag nanoparticles were prepared by heat treatment of a viscous resin obtained via citrate precursor. TEM and EDS analyses showed that Y2O3:Eu3+ (5 mol% Eu3+) is formed by nanoparticles with an average size of 12 nm, which increases to 30 nm when Ag is present because the effect of metal induced crystallization occurs. Ag nanoparticles with a size of 9 nm dispersed in Y2O3:Eu3+ (5 mol% Eu3+) were obtained and the surface plasmon effect on Ag nanoparticles was observed. The emission around 612 nm assigned to the Eu3+ (5D07F2) transition enhanced when the Ag nanoparticles were present in the Y2O3:Eu3+ luminescent material.  相似文献   

17.
Xiujie Bian  E. Jin 《Talanta》2010,81(3):813-83
Pt/polypyrrole (PPy) hybrid hollow microspheres were successfully prepared by wet chemical method via Fe3O4 template and evaluated as electrocatalysts for the reduction of hydrogen peroxide. The as-synthesized products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), X-ray diffraction (XRD), inductive coupled plasma emission spectrum (ICP) and Fourier-transform infrared spectra (FTIR) measurements. The results exhibited that ultra-high-density Pt nanoparticles (NPs) were well deposited on the PPy shell with the mean diameters of around 4.1 nm. Cyclic voltammetry (CV) results demonstrated that Pt/PPy hybrid hollow microspheres, as enzyme-less catalysts, exhibited good electrocatalytic activity towards the reduction of hydrogen peroxide in 0.1 M phosphate buffer solution (pH = 7.0). The composite had a fast response of less than 2 s with linear range of 1.0-8.0 mM and a relatively low detection limit of 1.2 μM (S/N = 3). The sensitivity of the sensor for H2O2 was 80.4 mA M−1 cm−2.  相似文献   

18.
This paper describes a rapid, simple and one-step method for preparing silica coated gold (Au@SiO2) nanoparticles with fine tunable silica shell thickness and surface functionalization of the prepared particles with different groups. Monodispersed Au nanoparticles with a mean particle size of 16 nm were prepared by citrate reduction method. Silica coating was carried out by mixing the as prepared Au solution, tetraethoxysilane (TEOS) and ammonia followed by microwave (MW) irradiation. Although there are several ways of coating Au nanoparticles with silica in the literature, each of these needs pre-coating step as well as long reaction duration. The present method is especially useful for giving the opportunity to cover the colloidal Au particles with uniform silica shell within very short time and forgoes the use of a silane coupling agent or pre-coating step before silica coating. Au@SiO2 nanoparticles with wide range of silica shell thickness (5-105 nm) were prepared within 5 min of MW irradiation by changing the concentration of TEOS only. The size uniformity and monodispersity were found to be better compared to the particles prepared by conventional methods, which were confirmed by dynamic light scattering and transmission electron microscopic techniques. The prepared Au@SiO2 nanoparticles were further functionalized with amino, carboxylate, alkyl groups to facilitate the rapid translation of the nanoparticles to a wide range of end applications. The functional groups were identified by XPS, and zeta potential measurements.  相似文献   

19.
The present work investigates the use of a multipath cell atomic absorption mercury detector for mercury speciation analysis in a hyphenated high performance liquid chromatography assembly. The multipath absorption cell multiplies the optical path while energy losses are compensated by a very intense primary source. Zeeman-effect background correction compensates for non-specific absorption. For the separation step, the mobile phase consisted in a 0.010% m/v mercaptoethanol solution in 5% methanol (pH = 5), a C18 column was used as stationary phase, and post column treatment was performed by UV irradiation (60 °C, 13 W). The eluate was then merged with 3 mol L− 1 HCl, reduction was performed by a NaBH4 solution, and the Hg vapor formed was separated at the gas–liquid separator and carried through a desiccant membrane to the detector. The detector was easily attached to the system, since an external gas flow to the gas–liquid separator was provided. A multivariate approach was used to optimize the procedure and peak area was used for measurement. Instrumental limits of detection of 0.05 µg L− 1 were obtained for ionic (Hg2+) and HgCH3+, for an injection volume of 200 µL. The multipath atomic absorption spectrometer proved to be a competitive mercury detector in hyphenated systems in relation to the most commonly used atomic fluorescence and inductively coupled plasma mass spectrometric detectors. Preliminary application studies were performed for the determination of methyl mercury in sediments.  相似文献   

20.
An unusual behaviour has been observed in the photo-induced response of an azobenzene side chain liquid crystalline polyester (P6d4). Room temperature irradiation with linearly polarised 488 nm light does not induce any birefringence (Δn) in films of this polymer that have been quenched from the isotropic state. However, using the same irradiation conditions Δn is induced in quenched films that have been kept in darkness for a few minutes. Besides, no photo-induced Δn is observed in films irradiated with 488 nm light that have been previously irradiated with UV light. In this case, Δn can be recorded if the UV irradiated films have been kept in darkness for several hours. In another set of experiments performed with the P6d4 polymer, irradiation with high intensity linearly polarised 488 nm light induces an initial increase of Δn and then it goes back to zero. Subsequent irradiation with linearly polarised 633 nm light induces an orientation of the azobenzene chromophores perpendicular to the polarisation of the 488 nm light and independent of the 633 nm light polarisation direction. These results are very different from those obtained in other side chain polyesters which only differ from P6d4 in the end substituent. The anomalous behaviour of P6d4 is discussed in terms of a supercooling effect of the isotropic phase, the trans to cis back isomerization, the trans aggregation kinetics and a memory effect associated with the main chain orientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号