首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Different series of poly(styrene–isoprene) diblock and poly(styrene–isoprene–styrene) triblock copolymers were prepared. In each series, the low molecular weight polystyrene block was kept constant, and the molecular weight of the polyisoprene block varied. The glass transition behavior of these polymers was studied and their glass transition temperatures compared with those of the random copolymers of styrene and isoprene. It is concluded that some low molecular weight styrene-isoprene block copolymers form a single phase. Krause's thermodynamic treatment of phase separation in block copolymers was applied to the data. One arrives at a polystyrene–polyisoprene interaction parameter χ1,2 ≈ 0.1. The experimental and theoretical limitations of this result are discussed.  相似文献   

2.
The behavior of isoprene and styrene polymerizations initiated by the complex of n-butylsodium and n-,s-dibutylmagnesium (sodium tributylmagnesiate) has been examined. The styrene-benzene system was found to yield stable active centers and polymers of predictable molecular weight and narrow molecular weight distributions. Isoprene, however, did not follow this behavior and yielded polydisperse material having molecular weights lower than those predicted on the basis that only n-butylsodium is capable of initiating chain growth. The polyisprene microstructure was found to consist of ~60% 3,4 and ~40% 1,4 units.  相似文献   

3.
Six styrene derivatives containing electron-withdrawing groups were synthesized and polymerized with anionic initiators in THF to afford stable anionic living polymers. The electron-withdrawing substituents are N,N-dialkylamide(1), N-alkylimino(2), oxazoline(3), tert-butyl ester(4), N,N-dialkylsulfonamide(5) and cyano(6) moieties. The polymers obtained have predictable molecular weights and narrow molecular weight distributions. The respective postpolymerizations proceeded with quantitative efficiency indicating that each polymer chain end retained the propagating reactivity. However, the resulting living polymers could not initiate the polymerizations of styrene and isoprene. On the other hand, the styrene derivatives(5 and 6) were polymerized with weak nucleophilic initiators, such as living polymer of tert-butyl methacrylate. These results suggest that the electron-withdrawing groups stabilize the living ends and also activate the respective monomers for anionic polymerization. The substitution effect reflects on the 13C NMR chemical shift of β-carbon of each vinyl group. The signal of the β-carbon appeared at lower magnetic field than that of styrene indicating electron deficiency on the carbon-carbon double bond of these monomers.  相似文献   

4.
The hydrogenation of unsaturated polymers with diimide generated in-situ by thermolysis of p-toluenesulfonyl hydrazide (TSH) is a commonly used method for preparing laboratory scale quantities of saturated diene based polymers. The by-products from TSH, particularly p-toluenesulfinic acid, can attack at olefinic sites, adding p-tolylsulfone functionality and degrading polymer molecular weight. The addition of tri-n-propyl amine has been found to eliminate these side reactions in butadiene containing polymers and copolymers, enabling the preparation of polymers devoid of backbone unsaturation. No detectable sulfur-containing impurities were indicated by IR, NMR, or elemental analysis, and no chain degradation was observed via GPC analysis of the hydrogenated polymers. cis-Polybutadiene and butadiene containing random and block copolymers with styrene were hydrogenated cleanly using this technique. A ratio of 2 mol TSH and 2 mol amine/mol of olefin was necessary to assure > 99% hydrogenation, and a w/v ratio of 2 parts butadiene/100 parts o-xylene gave the most efficient hydrogenation. Polymers prepared from isoprene were only partially hydrogenated when treated with TSH in the presence of tri-n-propyl amine, and gave evidence of slight degradation of the polymer structure.  相似文献   

5.
The content of styrene units in nonhydrogenated and hydrogenated styrene‐butadiene‐styrene and styrene‐isoprene‐styrene triblock copolymers significantly influences product performance. A size exclusion chromatography method was developed to determine the average styrene content of triblock copolymers blended with tackifier in adhesives. A complete separation of the triblock copolymer from the other additives was realized with size exclusion chromatography. The peak area ratio of the UV and refraction index signals of the copolymers at the same effective elution volume was correlated to the average styrene unit content using nuclear magnetic resonance spectroscopy with commercial copolymers as standards. The obtained calibration curves showed good linearity for both the hydrogenated and nonhydrogenated styrene‐butadiene‐styrene and styrene‐isoprene‐styrene triblock copolymers (r  = 0.974 for styrene contents of 19.3–46.3% for nonhydrogenated ones and r  = 0.970 for the styrene contents of 23–58.2% for hydrogenated ones). For copolymer blends, the developed method provided more accurate average styrene unit contents than nuclear magnetic resonance spectroscopy provided. These results were validated using two known copolymer blends consisting of either styrene‐isoprene‐styrene or hydrogenated styrene‐butadiene‐styrene and a hydrocarbon tackifying resin as well as an unknown adhesive with styrene‐butadiene‐styrene and an aromatic tackifying resin. The methodology can be readily applied to styrene‐containing polymers in blends such as poly(acrylonitrile‐butadiene styrene).  相似文献   

6.
A new styrene derivative monomer, 4-(N-carbazolyl)methyl styrene (CzMS), was synthesized by reacting 4-chloromethyl styrene with carbazole in the presence of sodium hydride. Then, CzMS was homopolymerized and copolymerized with different monomers such as methyl methacrylate (MMA), ethyl methacrylate (EMA), methyl acrylate (MA), ethyl acrylate (EA) and n-butyl acrylate (BA) by free radical polymerization method in N,N-di-methylformamide (DMF) solution at 70 ± 1 °C using azobisisobutyronitrile initiator to give the copolymers I-V in good yields. The structure of all the resulted polymers was characterized and confirmed by FT-IR, 1H NMR and 13C NMR spectroscopic techniques. The average molecular weight and glass transition temperature of polymers were determined using gel permeation chromatograph (GPC) and differential scanning calorimeter (DSC) instruments, respectively. It was found that these polymers with carbazole moieties have high thermal stability and the presence of bulk carbazole groups in polymer side chains leads to an increase in the rigidity and glass transition temperature of polymers.  相似文献   

7.
The graft polymers [poly(isoprene)‐graft‐poly(styrene)] (PI‐g‐PS), [poly(isoprene)‐graft‐poly(isoprene)] (PI‐g‐PI), [poly(isoprene)‐graft‐(poly(isoprene)‐block‐poly(styrene))] PI‐g‐(PI‐b‐PS), and [poly(isoprene)‐graft‐(poly(styrene)‐block‐poly(isoprene))] PI‐g‐(PS‐b‐PI) with PI as main chain were synthesized through living anionic polymerization (LAP) mechanism and the efficient coupling reaction. First, the PI was synthesized by LAP mechanism and epoxidized in H2O2/HCOOH system for epoxidized PI (EPI). Then, the graft polymers with controlled molecular weight of main chain and side chains, and grafting ratios were obtained by coupling reaction between PI?Li+, PS?Li+, PS‐b‐PI?Li+, or PI‐b‐PS?Li+ macroanions and the epoxide on EPI. The target polymers and all intermediates were well characterized by SEC,1H NMR, as well as their thermal properties were also evaluated by DSC. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
Vinyl-gem-dichlorocyclopropanes in the presence of radical type initiators undergo isomerizational homo-and copolymerization with vinyl monomers to form copolymers with the random distribution of monomer units in the macrochain. As compared to vinyl monomers like methyl methacrylate, acrylonitrile, and styrene they are considerably less active. By means of 13C NMR spectroscopy it was shown that vinyl-gem-dichlorocyclopropanes polymerized forming steroblock polymers of mainly trans-structure.  相似文献   

9.
As a novel synthetic strategy for copolymers of vinyl alcohol, we propose herein copolymerization of alkoxyvinylsilanes with other vinyl monomers, followed by oxidative cleavage of the alkoxysilyl groups attached to the main chain of the resulting copolymers. Radical copolymerization of di(isobutoxy)methylvinylsilane 1 with styrene afforded poly( 1 ‐ran‐styrene)s with a variety of compositions of both repeating units, although the Mn's (<9000) and yields (<35%) were rather low. The oxidative cleavage of the alkoxysilyl groups in the copolymers with m‐chloroperbenzoic acid proceeded efficiently, giving poly(vinyl alcohol‐ran‐styrene)s, which were soluble in common organic solvents. The structures of the poly(vinyl alcohol‐ran‐styrene)s were characterized by NMR, GPC, elemental analysis, and matrix‐assisted laser desorption time‐of‐flight mass spectrometry (MALDI‐TOF‐MS). © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3648–3658, 2007  相似文献   

10.
A lanthanide half‐sandwich complex and a ansa lanthanidocene have been assessed for isoprene–styrene chain shuttling copolymerization with n‐butylethylmagnesium (BEM). In the presence of 1 equiv BEM, a fully amorphous multiblock microstructure of soft and hard segments is achieved. The microstructure consists of poly(isoprene‐co‐styrene) blocks, with hard blocks rich in styrene and soft blocks rich in isoprene. The composition of the blocks and the resulting glass transition temperatures (Tg) can be easily modified by changing the feed and/or the relative amount of the catalysts, highlighting a new class of thermoplastic elastomers (TPEs) with tunable transition temperatures. The materials self‐organize into nanostructures in the solid state.  相似文献   

11.
The surface potential, ψ in mV, was determined for the following polyelectrolytes and co-polyelectrolytes in aqueous solution: sodium poly(styrene sulfonate); sodium poly(vinyl sulfonate); poly(vinyl alcohol-co-55% sodium vinyl sulfate); poly(methylmethacrylate-co-40% sodium styrene sulfonate); poly (methylmethacrylate-co-60% sodium styrene sulfonate); poly(styrene-co-56% styrene sulfonate); and poly(styrene-co-80% styrene sulfonate). For comparison, the surface potentials of aqueous sodium dodecyl sulfate and sodium dodecylbenzene sulfonate micelles were also determined. The dyes neutral red and safranine-T were used as indicators. ThepKa of the former was calculated from the Henderson-Hasselbach equation, using UV-VIS spectroscopy to determine the concentration of protonated ground state as a function of pH. The surface potential of the aggregates was culculated from the equation: $$pKa_{\text{i}} = pKa_0 - {{F\Psi } \mathord{\left/ {\vphantom {{F\Psi } {2.3RT}}} \right. \kern-\nulldelimiterspace} {2.3RT}}$$ wherepKa i andpKa o refer to the indicatorpKa in the presence of charged and nonionic interfaces, respectively, and the other terms have their usual meaning. The protonation kinetics of the triplet state of safranine-T (measured from the decay of its transient absorption at 830 nm) was used to determine hydronium ion concentrations at aggregate interfaces, and the corresponding surface potentials were calculated from: $$a_{{\text{Hi}}} = a_{{\text{Haq}}} \times \exp \left( {{{ - F\Psi } \mathord{\left/ {\vphantom {{ - F\Psi } {RT}}} \right. \kern-\nulldelimiterspace} {RT}}} \right)$$ wherea Hi anda Haq refer to the hydronium ion activity at the aggregate interface, and in bulk water, respectively. Surface potentials determined by both techniques were in excellent agreement. Values of ψ were found to depend on the structure of the polyelectrolyte, sodium poly(styrene sulfonate) versus sodium poly(vinyl sulfonate) and, for the same type of co-polyelectrolyte, on the percentage of charged monomer.  相似文献   

12.
《Tetrahedron: Asymmetry》2005,16(23):3829-3836
A chiral ruthenium porphyrin complex, functionalized with four vinyl groups, has been polymerized with styrene, divinylbenzene (or ethylene glycol dimethacrylate) to obtain supported ruthenium complexes. The asymmetric addition of ethyl diazoacetate (or diazoacetonitrile) to styrene derivatives was carried out by using these polymers as catalysts. The reaction proceeded under mild conditions and gave trans-cyclopropanes with good enantiomeric excess (up to 90%).  相似文献   

13.
The length of pendant side chains in charged, random, comb‐shaped polymers dictates the nature of their short‐range ordering. Random copolymers, and terpolymer, of 4‐vinylpyridine (4VP), styrene, and isoprene were synthesized and subsequently fully quaternized with 1‐alkylbromides having varying number of carbons on the alkyl group ranging from 2 to 8. Evaluation by wide angle X‐ray scattering revealed that dipole–dipole attraction facilitates the formation of ionomer cluster morphology in samples with two carbons on the pendant side chain, whereas for samples with four or more carbons on the pendant side chains, side‐chain sterics was dominant resulting in periodic backbone spacing. Copolymers with isoprene, having flexible backbones, favor the formation of ionomer cluster morphology while styrene copolymers having rigid backbones disfavor the formation of ionomer clusters. An “in‐line” dipole model was developed to predict the separation distance at which both ionomer cluster and backbone–backbone morphologies could coexist. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1325–1336  相似文献   

14.
15.
Mg(n‐Bu){η2‐HC[C(Me)NMes]2} ( 2 ) (Mes = mesityl, 2,4,6‐Me3C6H2), a new β‐diketiminate‐supported magnesium alkyl, has been synthesized and structurally characterized. The X‐ray analysis of the lanthanum half‐sandwich complex Cp*La(BH4)2(THF)2 ( 1 ) (Cp* = pentamethylcyclopentadienyl; THF = tetrahydrofuran) is also reported. Complex 2 has been assessed as both alkylating agent and chain transfer agent for the lanthanum‐catalysed polymerization and coordinative chain transfer polymerization of isoprene and styrene using 1 as the pre‐catalyst. The results are compared with those for n‐butylethylmagnesium (BEM) which is traditionally used for this purpose. The 1,4‐trans stereospecific polymerization of isoprene shows a more controlled character using 2 versus BEM, and higher activities are observed for the chain transfer polymerization of styrene when 2 is used as chain transfer agent. The activity is in turn lower than that observed using BEM when 1 equiv. of magnesium compound is used for the polymerization of styrene. The combination of 1 , 2 and Al(i‐Bu)3 leads finally to a 1,4‐trans stereoselective coordinative chain transfer polymerization of isoprene, in a similar way to BEM. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Branched polystyrenes have been synthesized using atom transfer radical polymerization (ATRP) of styrene in the presence of divinyllbenzene (DVB) as branching comonomer. The synthesis was completed via facile one pot approach. Mole ratio of styrene to DVB in range of 5:1-30:1 was employed to obtain soluble polymers. The kinetics of the polymerization and evolution of polymer compositions were revealed by determining the conversions of reactants by gas chromatography (GC). The growth of molecular weight was monitored by GPC and the results indicate that the branched polymers were formed by self-condensing vinyl polymerization (SCVP) of AB monomer or macromonomers. The branched structure of the resulting polymers was confirmed by the remarkable discrepancies of the weight average molecular weights determined by GPC and multi angle laser light scattering (MALLS). The specific viscosity of the resulting polymer is also much lower compared with that of linear analogues. The influence of dosage of initiator and catalyst on the yield and molecular weights of the resulting polymers was also investigated.  相似文献   

17.
A controlled polymerisation of styrene has been achieved under ATRP conditions by using a phosphine-containing MoIII/MoIV system. Linearity of the Mn vs conversion plot and low PDI’s are observed in bulk, in a 30% (v/v) PhCl solution, and in a chain extension experiment when using MoCl3(PMe3)3/BIB. Controlled polymerisation is also observed for a reverse ATRP experiment starting from MoCl4(PMe3)3/AIBN. The absence of chain transfer and termination is confirmed by NMR and MALDI–TOF analyses of polymers obtained by employing BEB and BIB as initiators. To cite this article: F. Stoffelbach et al., C. R. Chimie 5 (2002) 37–42  相似文献   

18.
李翠萍 《高分子科学》2013,31(10):1404-1414
The branching generation during the free radical copolymerization of chain transfer monomer p-vinyl benzene sulfonyl chloride (VBSC) with styrene was investigated by a simple mathematic model. Chain transfer constant of VBSC was determined to be around 0.3 by fitting the 1H-NMR monitored experimental results with a mathematic model. According to the theoretical analysis, the obtained poly(VBSC) and its copolymers were substantiated to have a grafting-like main chain with residual pendent sulfonyl chloride groups after consuming most of the vinyl groups. The copolymerization results of VBSC with styrene at varied feed ratios demonstrated that conversion of sulfonyl chloride groups was lower than that of the monomer, which was in agreement with the theoretical results. The glass transition temperature, number average molecular weight and distribution of those obtained polymers were primarily investigated. Comparing with other chain transfer monomers, VBSC has a chain transfer constant much closer to unity therefore a more branched polymer is expected. Additionally, the branched polystyrene with residual sulfonyl chloride groups is hopefully to be further used as ATRP macroinitiators or reactive intermediates to synthesize functional polymers with complex structure.  相似文献   

19.
In the present work, we use the binary insertion compound LiC12 to polymerize styrene, methyl methacrylate, butadiene, isoprene, and to copolymerize isoprene and styrene in various hydrocarbon solvents (aromatics and aliphatic) and etheral solvents. We show that the styrene polymerization in aromatic solvents gives better yields than in the etheral solvents, the polymer being atactic. Methyl methacrylate does not polymerize in toluene but does so completely in DME. More generally, the yields of polymerization are better with KC37 than with LiC12 because of the different capacities of the monomer to get into the carbon layers. The polymerization of dienes with LiC12 shows that the microstructures of the polymer obtained in π-or n-donor solvents are similar to the ones obtained by homogenous polymerization with Li cation in such solvents. However, for isoprene in cyclohexane, the results are different. The isoprene styrene copolymers are statistical ones and the mean length of styrene blocks is less than 5. The monomer interaction with the insertion compound and the growing chain geometry between the carbon layers are the facts which control either the stereospecificity of the polymerization or the selectivity of the copolymerization.  相似文献   

20.
Both vinyl methacrylate (VMA) and vinyl acrylate (VA) were homopolymerized by n-butyllithium catalyst at ?78°C. Both of the anionic polymers were soluble in common organic solvents, and only vinyl group was contained in the polymers. Both of the monomers were homopolymerized by free-radical catalysts under different conditions. The soluble polymers were obtained under low monomer concentrations and at low conversions. It was estimated by NMR and infrared spectroscopy that both the soluble polymers contained mainly a vinyl group, similar to the anionic polymers. The soluble VMA polymers comprised 10–20% cyclic units for monomer concentrations ranging from 1.8 to 0.5 mole/I. The soluble VA polymers comprised 50–60% cyclic units for monomer concentrations ranging from 0.9 to 0.3 mole/l. It was suggested that the cyclic units did not consist of γ-lactone but of larger-membered rings than δ-lactone or of ladder structural units. The difference between the cyclization content of poly-VMA and that of poly-VA might be explained by the copolymerization data of the reference monomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号