首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystallization behavior of isotactic polypropylene (iPP) melts with a high order has been carefully examined by differential scanning calorimetry (DSC) and polarized light microscopy (PLM). The experimental results show that the helically ordered iPP melt crystallizes by heterogeneous nucleation with two-dimensional diffusion controlled growth and the Avrami exponent is about 2. The data available both from our DSC and PLM experiments and from the literature indicate that the order of a polymer melt can speed up the crystallization process. When some unmelted materials exist in the ordered melt, the crystallization will become more rapid. Received: 16 June 2000 Accepted: 16 October 2000  相似文献   

2.
Polymer solidification occurring in many processes, like for instance injection molding, compression molding and extrusion, is a complex phenomenon, strongly influenced by the thermo-mechanical history experienced by the material during processing. From this point of view, characterization of polymer crystallization in the range of processing conditions, i.e. including high cooling rate, is of great technological and academic interest. Quiescent, non-isothermal crystallization kinetics of two polypropylene resins were investigated using a new method, based on fast cooling of thin samples with air/water sprays and optical detection of the crystallization phenomenon. The range of cooling rates attained in this experimental study is considerably larger than that achieved by traditional methods. Quiescent crystallization kinetics of the resins is also investigated by the means of DSC, operated under isothermal conditions with a limited degree of under-cooling and for constant cooling rates up to about 1 K s−1. The results demonstrate the importance of performing fast cooling experiments to gather reliable crystallization kinetics data.  相似文献   

3.
邱兆斌 《高分子科学》2014,32(9):1139-1148
Poly(vinylidene fluoride) (PVDF) and poly(butylene succinate-co-24 mol% hexamethylene succinate) (PBHS), both crystalline polymers, formed melt-miscible crystalline/crystalline polymer blends. Both the characteristic diffraction peaks and nonisothermal melt crystallization peak of each component were found in the blends, indicating that PVDF and PBHS crystallized separately. The crystalline morphology and crystallization kinetics of each component were studied under different crystallization conditions for the PVDF/PBHS blends. Both the spherulitic growth rates and overall isothermal melt crystallization rates of blended PVDF decreased with increasing the PBHS composition and were lower than those of neat PVDF, when the crystallization temperature was above the melting point of PBHS component. The crystallization mechanism of neat and blended PVDF remained unchanged, despite changes of blend composition and crystallization temperature. The crystallization kinetics and crystalline morphology of neat and blended PBHS were further studied, when the crystallization temperature was below the melting point of PBHS component. Relative to neat PBHS, the overall crystallization rates of the blended PBHS first increased and then decreased with increasing the PVDF content in the blends, indicating that the preexisting PVDF crystals may show different effects on the nucleation and crystal growth of PBHS component in the crystalline/crystalline polymer blends.  相似文献   

4.
The total heat produced and the rate of heat production during the crystallization of cyclotetramethylenetetranitramine (HMX) from nitric acid are measured using a conduction calorimeter. The data of thermograms of HMX are treated based on the dislocation theory model. The results show that the crystal growth process of HMX accords with the dislocation theory.  相似文献   

5.
Thermodynamic properties of sodium gluconate (SG) aqueous solution have been measured over the 303.15–343.15 K temperature range including solubility, density, and viscosity. For proper crystallization of SG, the kinetics of evaporative crystallization with spontaneous nucleation was subsequently investigated in a semi-batch mode. The crystals present a size-dependent growth rate, and the number particle size distribution (PSD) data were well fitted with the MJ2 model. The effects of supersaturation, suspension density, and agitation intensity were carefully analyzed to contribute to a better understanding for the control of crystal size of SG.  相似文献   

6.
The quality of thermoplastic parts strongly depends on their thermal history during processing. Heat transfer modelling requires accurate knowledge of thermophysical properties and crystallization kinetics in conditions representative of the forming process. In this work, we present a new PvT apparatus and associated method to identify the crystallization kinetics under pressure. The PvT-xT mould was designed for high performance thermoplastics: high temperature (up to 400 °C), high cooling rate (up to 200 K/min) and very high pressure (up to 200 MPa). Specific volume measurements were performed at a low cooling rate to avoid a thermal gradient. The crystallization kinetics under pressure can be identified for a wide range of cooling rates by an inverse method taking into account the thermal and crystallinity gradients. Since identification is based on volume variations, the proposed methodology is non-intrusive. Furthermore, the enthalpy released by the crystallization was measured during the experiment by a heat flux sensor located in the moulding cavity.  相似文献   

7.
Three types of organic compounds—two carboxylic acids and an anhydride, were used as additives for polyketone(PK). The effect of the additive structure and their feed ratios on the melting temperature, crystallization temperature, and crystallization rate of PK were studied. We found that the crystallization temperature could be reduced significantly by introducing a small quantity of organic additive, in particular, an anhydride. On addition of 1 phr of anhydride, the crystallization temperature was reduced by 10.7 ℃. Therefore, the non-isothermal crystallization kinetics of aliphatic PK/anhydride blends with various feed ratios was investigated using DSC. The results were analyzed by various theoretical models, such as Avrami, Ozawa and combined Avrami-Ozawa models.  相似文献   

8.
Binary blends of poly(ethylene terephtalate) (PET) and thermotropic liquid crystal polyester (TLCP) have been prepared by both solution and melt blending methods. The TLCPs utilized were Vectra (Hoechst Celanese), TR-4, a TLCP synthesized in our laboratory, and a block copolymer consisting of three TR-4 units followed by three PET units. The phase behavior of the blends was studied by differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA) and optical microscopy. The results show that none of the blends is miscible, but significant interactions exist between the PET phase and the TLCP phase in the case of TR-4 and TR-4 block copolymer blends. These interactions lead to a different nucleation mechanism in these blends compared to that in PET/Vectra.  相似文献   

9.
牛艳华 《高分子科学》2016,34(9):1117-1128
Crosslinking reactions of high density polyethylene with low peroxide concentrations ranging from 0.1 wt% to 1.0 wt% at temperatures of 170, 180 and 190 ° C were monitored by rheological measurements. A critical gel forms at the peroxide concentration of 0.2 wt%, where the transition from long chain branching generation to crosslinking network formation could occur. Rheokinetics of crosslinking can be fitted well by Ding-Leonov's model. The curing rate k_2 at the earlier stage exhibits about 3 times acceleration per 10 °C with increasing temperature, while the equilibrium modulus G′ at the fully cured stage is almost independent of temperature. Influences of crosslinking on the subsequent crystallization behaviors were detected by DSC measurements. Above the critical gel concentration, crystallization is largely retarded as evidenced by the lower crystallization temperature Tc and crystallinity X_c due to the network formation. The secondary crystallization valley located at the temperature near 80 °C can be observed above the critical concentration, which becomes more evident with the increasing peroxide concentration and curing temperature. This phenomenon provides another evidence of crystallization retardation by the crosslinking network.  相似文献   

10.
This research aimed to reduce the variability on the data obtained from differential scanning calorimetric (DSC) analysis of the isothermal crystallization kinetics of cocoa butter.

To enable transformation of the DSC crystallization peak to a sigmoid crystallization curve, the DSC peak area has to be integrated. Usually, the start and end points of the crystallization peak are determined visually. The result of this visual determination appeared to be very much dependent on the operator, but also differed considerably when the same operator performed the integration several times. By proposing an objective calculation algorithm to determine the start and end points of integration, the variability caused by the operator during the integration procedure could be eliminated. Furthermore, sample preparation and the DSC heating protocol to melt the sample prior to crystallization were studied. Three heating protocols (65 °C for 15 min, 65 °C for 30 min and 80 °C for 15 min) were compared and it was shown that holding at 65 °C for 15 min was sufficient to eliminate any influence of sample history. Two different sample preparation procedures were compared and it appeared that a change in sample preparation procedure had a significant influence on the measured crystallization process. It is thus important to keep this method constant to eliminate the variability caused by it.  相似文献   


11.
Colloidal crystallization kinetics is studied in the shear flow of a suspension of colloidal silica spheres (110 nm in diameter), using a continuously-circulating type of stopped flow cell system. The crystallization rate from a suspension containing a small amount of nuclei and/or single crystals is high compared with that from a suspension containing no nuclei and/or single crystals. Crystal growth takes place at shear rates smaller than 3.4 s–1 and at sphere concentrations higher than a volume fraction of 0.004.  相似文献   

12.
The melting behavior and the crystallization kinetics of poly(dithiotriethylene adipate) (PSSTEA) were investigated by differential scanning calorimetry and hot-stage optical microscopy. The observed multiple endotherms, commonly displayed by polyesters, were influenced by the crystallization temperature (Tc) and ascribed to melting and recrystallization processes. Linear and nonlinear theoretical treatments were applied to estimate the equilibrium melting temperature for PSSTEA, using the corrected values of the melting temperature; the nonlinear estimation yielded a higher value by about 15 °C. Isothermal crystallization kinetics were analyzed according to the Avrami’s theory. Values of the Avrami’s exponent n close to 3 were obtained, independently of Tc, in agreement with a crystallization process originating from predeterminated nuclei and characterized by three-dimensional spherulitic growth. As a matter of fact, space-filling spherulites were observed by optical microscopy at all Tc’s. The rate of crystallization became lower as Tc increased, as usual at low undercooling, the crystallization process being controlled by nucleation.  相似文献   

13.
The crystallization of paraffins from their solution at low temperature was investigated in the presence of ethylene-vinyl acetate (EVA) copolymers that allow the control of the size of the crystals. Depending on the type of solvent and distribution of the paraffin lengths, the mechanisms of crystal formation and growth are different. Precipitation of the EVA prior to the paraffins leads to the nucleation of a large number of crystals, whereas the adsorption of EVA on the surface of the growing crystals slows down the crystal growth. EVA can act either as a nucleating agent or as a growth inhibitor. These two mechanisms were identified from the analysis of the temperature of crystallization (cloud point), the chemical composition of the crystals, and the observations of the crystal habit. The EVA was able to co-crystallize with the paraffins in crystals of an orthorhombic structure and the melting enthalpies of the crystalline paraffin did not depend significantly on their neighborhood. The energies of interaction between the different paraffinlike components are close to each other, so that minor changes of the experimental conditions may lead to dramatic effects. This is the basic rationale for the large behavioral diversity observed in these systems.  相似文献   

14.
In the DSC technique, isothermal crystallization experiments are usually performed on thin flat specimens, but their interpretation generally uses theories developed for an unbounded volume. In this paper, isothermal crystallization of spherical entities in the volume limited by two parallel infinite planes is considered. Our model, derived from Avrami's theory, gives an analytical expression for the transformed volume fraction as a function of time. It is shown that the influence of thickness becomes important when thickness becomes of the order of or smaller than the average spherulite radius. The main effects of a decreasing thickness are a slower crystallization kinetics and a decrease in the Avrami exponent. These results can be used to interpret experimental data obtained in isothermal polymer crystallization.  相似文献   

15.
M. Martin 《Chromatographia》1982,15(7):426-432
Summary The classical method for the determination of the molecular weight distribution (MWD) curve of a polymer requires fractionation according to the molecular weight and prior calibration of the separator. It is shown that the use of a dual detection system which includes a molecular mass sensitive detector eliminates the need for prior calibration. The principles of operation of a low-angle light scattering photometer, working as such a detector, are presented, as well as the basic equations for determination of the MWD curve from the elution curve and of the average molecular weights. Then the performances of the light scattering photometer are discussed with special emphasis on the various sources of errors and unaccuracies in these determinations.  相似文献   

16.
Polymer molar mass distributions critically affect macroscopic characteristics and performance of polymeric materials. While multi-detector methods coupled to size exclusion chromatography (SEC) are widely used to measure endproduct mass distributions, less progress has been made in simultaneously controlling and verifying the evolution of these distributions during synthesis. This work focuses on quantitative predictions and online verification of conversion kinetics and of molecular weight during free radical homopolymerization of acrylamide, where reagents were fed into the reactor during the reaction. The central task is to establish and experimentally test a formalism combining free radical polymerization kinetics with time dependent processes related to flows of material into and out of the reactor. Monomer feed experiments were performed that alternately hold molecular weight constant and ramp the weight up, in contrast to batch reactions, where molecular weight decreases. Three types of initiator feed ‘tapers’ were also used to produce predictable conversion kinetics and mass distributions: (i) constant initiator feed, (ii) linearly stepped feed to produce Gaussian conversion kinetics, and (iii) booster shots to produce multi-modal masses. Automatic Continuous Online Monitoring of Polymerization reactions (ACOMP) was used to follow the conversion and evolution of the average mass distribution, and multi-detector SEC was used to cross-check results and measure full distributions of endproducts. In general, there was good agreement between the predictions and results. In future work this approach can be used as an Ansatz for reaction trajectory prediction, and the online monitoring signals exploited to make feedback controlled corrections to the reagent flows and other reaction conditions.  相似文献   

17.
测定高聚物结晶动力学参数的非等温理论和方法   总被引:18,自引:0,他引:18  
对测定高聚物结晶动力学参数的非等温结晶理论和等速变温DSC方法进行了讨论,文中包含了作者在此领域研究工作的最新进展。  相似文献   

18.
In the polymer melt processing, the solidification has a huge importance on the properties of the resulting part. For a semi-crystalline resin, this phenomenon involves a complex interplay between crystallization and the material rheology. In this work, an investigation is carried out on the influence of thermal conditions on crystallization kinetics and rheology of two commercial polyoxymethylene (POM) copolymers. In particular, isothermal crystallization experiments using differential scanning calorimetry (DSC) and rotational rheometry to measure the dynamic viscosity are performed. The evolution of the relative crystallinity and Normalized Rheological Function (NRF) are correlated by a recent technique which allows simultaneous analysis of several measurements, even if they are not carried out at same temperatures. On this basis, a relationship between the crystallinity and the hardening, i.e. the sharp increase in the viscosity, is obtained.  相似文献   

19.
Melt or cold crystallization kinetics has a strong bearing on morphology and the extent of crystallization, which significantly affects the physical properties of polymeric materials. Nonisothermal crystallization kinetics are often analyzed by the classical Johnson–Mehl–Avrami–Kolmogorov (JMAK) model or one of its variants, even though they are based on an isothermal assumption. As a result, during the nonisothermal (e.g. constant heating or cooling rate) crystallization of polymeric material, different sets of model parameters are required to describe crystallization at different rates, thereby increasing the total number of model parameters. In addition, due to the uncorrelated nature of these model parameters with the cooling or heating rate, accurate modeling at any intermediate condition is not possible. In the present work, these two limitations of the conventional approach have been eliminated by exhibiting the existence of a functional relationship between cooling or heating rate and effective activation energy during nonisothermal melt or cold crystallization in three linear aromatic polyesters. Furthermore, it has been shown that when the JMAK model is used in conjunction with this functional relationship, it is possible to precisely predict the experimental nonisothermal melt or cold crystallization kinetics at any linear cooling or heating rate with a single set of model parameters.  相似文献   

20.
The glass transition behavior and crystallization kinetics of Cu0.3(SSe20)0.7 chalcogenide glass were investigated using differential scanning calorimetry (DSC), X-ray diffraction (XRD). Two crystalline phases (SSe20 and Cu2Se) were identified after annealing the glass at 773 K for 24 h. The activation energy of the glass transition (Eg), the activation energy of crystallization (Ec), the Avrami exponent (n) and the dimensionality of growth (m) were determined. Results indicate that this glass crystallizes by a two-stage bulk crystallization process upon heating. The first transformation, in which SSe20 precipitates from the amorphous matrix with a three-dimensional crystal growth. The second transformation, in which the residual amorphous phase transforms into Cu2Se compound with a two-dimensional crystal growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号