首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of ethyl linoleate (1) with NO(2)(-) in different air-equilibrated acidic media resulted in the formation of complex patterns of products, some of which could be isolated by repeated TLC fractionation and were formulated as the nitroalkenes 2-5, the novel (1E, 5Z)-3-nitro-1,5-hexadienes 6/7, the novel (E,E)-1, 5-dinitro-1,3-pentadiene derivatives 8 and 9, and the nitro alcohols 10/11 and 12/13 by extensive GC-MS and 2D NMR analysis, as aided by 1D Hartmann-Hahn proton mapping experiments. Similar reaction of methyl oleate gave mainly nitroalkene (14/15) and allylic nitro derivatives (16/17). Formation of 2-13 may be envisaged in terms of HNO(2)-mediated nitration pathways in which regioisomeric beta-nitroalkyl radical intermediates derived from attack of NO(2) to the 1,4-pentadiene moiety of 1 evolve through competitive H-atom abstraction and free radical combination routes.  相似文献   

2.
In this paper, copper(I) amidate complexes (2-3), proposed intermediates in copper-catalyzed Goldberg reaction, have been prepared and characterized by elemental analysis, IR, (1)H NMR and X-ray crystallography. Ancillary ligand bis(diphenylphosphino)ferrocene (dppf) has contributed greatly to the stability of the copper-amidate complexes due to its strong chelating ability and weak intermolecular interactions. Thermal gravimetric analyses are carried out to determine the thermal competency of complexes 2-3 as the intermediates of the high-temperature Goldberg reactions. Reaction of complexes 2 and 3 with aryl halides generates the N-arylation products 5-8, accompanied by the formation of a copper(I) complex Cu(dppf)X (X = I or Br) 4, which has been determined by LC-MS analysis. These results provide new evidence for the mechanism of copper(I)-catalyzed Goldberg reaction.  相似文献   

3.
Direct reaction of [Zn(OH)(L)]+, L = cis,cis-1,3,5-tris[(E,E)-3-(2-furyl)acrylideneamino]cyclohexane, with methanol gives a mixture of the starting material and [Zn(OMe)(L)]+; structural analysis of the complexes shows that they are models of reactive intermediates in the catalytic cycles of the zinc enzymes carbonic anhydrase and liver alcohol dehydrogenase.  相似文献   

4.
Six Cu(I) complexes with cis,cis-1,3,5-triaminocyclohexane derivatives (R3CY, R = Et, iBu, and Bn), [Cu(MeCN)(Et3CY)]SbF6 (1), [Cu(MeCN)(iBu3CY)]SbF6 (2), [Cu(MeCN)(Bn3CY)]SbF6 (3), [Cu(CO)(Et3CY)]SbF6 (4), [Cu(CO)(iBu3CY)]SbF6 (5), and [Cu(CO)(Bn3CY)]SbF6 (6), were prepared to probe the ability of copper complexes to effectively catalyze oxygenation reactions. The complexes were characterized by elemental analysis, electrochemical and X-ray structure analyses, electronic absorption spectroscopy, IR spectroscopy, 1H NMR spectroscopy, and ESI mass spectrometry. The crystal structures of 1-3 and 6 and the CO stretching vibrations (nuCO) of 4-6 demonstrate that the ability of R3CY to donate electron density to the Cu(I) atom is stronger than that of the previously reported ligands, 1,4,7-triazacyclononane (R3TACN) and 1,4,7-triazacyclodecane (R3TACD). Reactions of complexes 1-3 with dioxygen in THF or CH2Cl2 at -105 to -80 degrees C yield bis(mu-oxo)dicopper(III) complexes 7-9 as intermediates as confirmed by electronic absorption spectroscopy and resonance Raman spectroscopy. The Cu-O stretching vibrations, nu(Cu-O) for 7 (16O2: 553, 581 cm-1and 18O2: 547 cm-1) and 8 (16O2: 571 cm-1 and 18O2: 544 cm-1), are observed in a lower energy region than previously reported for bis(micro-oxo) complexes. The decomposition rates of complexes 7-9 in THF at -90 degrees C are 2.78 x 10-4 for 7, 8.04 x 10-4 for 8, and 3.80 x 10-4 s-1 for 9. The decomposition rates of 7 and 8 in CH2Cl2 were 5.62 x 10-4 and 1.62 x 10-3 s-1, respectively, and the thermal stabilities of 7-9 in CH2Cl2 are lower than the values measured for the complexes in THF. The decomposition reactions obeyed first-order kinetics, and the H/D isotope experiments for 8 and 9 indicate that the N-dealkylation reaction is the rate-determining step in the decomposition processes. On the other hand, the decomposition reaction of 7 in THF results in the oxidation of THF (acting as an exogenous substrate) to give 2-hydroxy tetrahydrofuran and gamma-butyrolactone as oxidation products. Detailed investigation of the N-dealkylation reaction for 8 by kinetic experiments using N-H/D at -90 degrees C showed a kinetic isotope effect of 1.25, indicating that a weak electrostatic interaction between the N-H hydrogen and mu-oxo oxygen contributes to the major effect on the rate-determining step of N-dealkylation. X-ray crystal structures of the bis(micro-hydroxo)dicopper(II) complexes, [Cu2(OH)2(Et3CY)2](CF3SO3)2 (10), [Cu2(OH)2(iBu3CY)2](CF3SO3)2 (11), and [Cu2(OH)2(Bn3CY)2](ClO4)2 (12), which have independently been prepared as the final products of bis(micro-oxo)dicopper(III) intermediates, suggest that an effective interaction between N-H and mu-oxo in the Cu(III)2(micro-O)2 core may enhance the oxidation ability of the metal-oxo species.  相似文献   

5.
Cyclization reactions of group 6 Fischer carbene complexes with cyclopentanone and cyclohexanone enamines are described. Enamine 3a undergoes thermal alpha,beta,beta'-annulation with alkenylcarbene complexes 1 and 2 (THF, 60 degrees C), affording semibullvalenes 5. The metalate intermediates 6, resulting from beta,beta'-annulation of the enamines 3a and 4a, were quantitatively formed by running the reaction in hexane at room temperature. Acid-promoted demetalation of 6 afforded endo-2-bicyclo[3.2.1]octen-8-ones 7 and endo/exo-2-bicyclo[3.3.1]nonen-9-ones 8 (endo/exo = 5:1). Using (S)-methoxymethylpyrrolidine-derived enamines 3b and 4b,c allowed highly enantioenriched cycloadducts endo-(+)-7 as well as endo-(-)-8 and exo-(-)-8 to be accessed. The non-heteroatom-stabilized carbene complex 10 was formed from complex 6 by Me(3)SiOTf-promoted elimination of the methoxy group, characterized by (13)C NMR, and transformed into the organic compounds 7, 7-d, and 11 as well as into bicyclo[3.2.1]octan-2,8-diones 14 and cycloheptanones 15. On the basis of this sequence, enantioenriched cycloheptanones (+)-15 were efficiently prepared in one pot from carbene complexes 2 and enamine 3b (51-55% yield, 91-96% ee). Extension of this work to simple Fischer carbene complexes 16 allowed an appropriate way to generate the nonstabilized pentacarbonyl[(phenyl(alkyl)carbene]tungsten complex 17 to be designed, for which the thermal and chemical behavior leading to compounds 18-21 is described.  相似文献   

6.
Protonation of the highly reactive 1:1 intermediates produced in the reaction between tributylphosphine and dimethyl acetylenedicarboxylate by 3-hydroxy-2-methyl-4 H -pyran-4-one leads to vinyltributylphosphonium salts, which undergo an addition-elimination reaction in CH 2 Cl 2 at room temperature to produce dimethyl 2-[(2-methyl-4-oxo-4 H -pyran-3-yl)oxy]-2-butenedioate (1:1 mixtures of E and Z isomers) in fairly good yields.  相似文献   

7.
《Journal of Coordination Chemistry》2012,65(16-18):2965-2977
Abstract

Thermal treatment of pyridine-2-ethyl cyclopentadiene (1) with Fe(CO)5 and Ru3(CO)12 gave novel intramolecular C–H activated dinuclear products (3 and 5). In the case of Fe(CO)5, the reaction also afforded the normal bis(cyclopentadienyl) diiron complex (4). However, similar reaction of pyridine-2-methyl cyclopentadiene (2) with Fe(CO)5 and Ru3(CO)12 only afforded the normal bis(cyclopentadienyl) dinuclear metal complexes (7 and 8). For Ru3(CO)12, the reaction also yielded a pendant η1-pyridyl-coordinated product (9). In addition, the reactions of 1 and 2 with Re2(CO)10 formed the corresponding pyridylethyl/pyridylmethyl cyclopentadienyl rhenium tricarbonyl complexes 10 and 11, which further underwent pyridine to rhenium cyclization via photoirradiation to provide the rhenium dicarbonyl complexes 12 and 13. The molecular structures of 3, 5, 6, 7, 8, 9, and 12 were determined by X-ray diffraction.  相似文献   

8.
Novel tungsten-containing carbonyl ylides 7, generated by the reaction of the o-alkynylphenyl carbonyl derivatives 1 with a catalytic amount of W(CO)(5)(thf), reacted with alkenes to give polycyclic compounds 5 through [3 + 2]-cycloaddition reaction followed by intramolecular C-H insertion of the produced nonstabilized carbene complex intermediates 8. In the presence of triethylsilane, these tungsten-containing carbene intermediates 8 were smoothly trapped intermolecularly by triethylsilane to give silicon-containing cycloadducts 17 with regeneration of the W(CO)(5) species. By this procedure, the scope of alkenes employable for this reaction was clarified. The presence of the tungsten-containing carbonyl ylide 7c was confirmed by direct observation of the mixture of o-ethynylphenyl ketone 1c and W(CO)(5)(thf-d(8)). Careful analysis of the intermediate by 2D NMR, along with the observation of the direct coupling with tungsten-183 employing the (13)C-labeled substrate, confirmed the structure of the ylide 7c. Examination using (E)- or (Z)- vinyl ether revealed that the [3 + 2]-cycloaddition reaction proceeded in a concerted manner and that the facial selectivity of the reaction differed considerably depending on the presence or absence of triethylsilane. These results clarified the reversible nature of this [3 + 2]-cycloaddition reaction.  相似文献   

9.
The relevance of platinum in the reaction of thiophene and derivatives with homogeneous transition-metal complexes as models for hydrodesulfurization has led us to the study of the reaction chemistry of complexes containing Pt--H, Pt--SH, and Pt--S fragments. Exploration of the reactions triggered by addition of controlled amounts of Na2S or NaSH to [Pt2(H)2(mu-H)(dppp)2]ClO4 (1) has provided evidence of the formation of complexes [Pt2(mu-H)(mu-S)(dppp)2]ClO4 (2), [Pt(H)(SH)(dppp)] (3), [Pt2(mu-S)2(dppp)2] (4), [Pt2(mu-S)(dppp)2] (5) and [Pt(SH)2(dppp)], in which dppp denotes 1,3-bis(diphenylphosphanyl)propane. Consequently, complexes 1, 2, and 5 as well as the already reported 3, 4, and [Pt(SH)2(dppp)] have been obtained and fully characterized spectroscopically. Also the crystal structures of 1 and 2 have been solved. Complexes 1-5 constitute the main framework of the network of reactions that account for the evolution of 1 under various experimental conditions as shown in Scheme 1. Apparently, this network has complexes 2 and 4 as dead-ends. However, their reciprocal interconversion by means of the replacement of one bridging hydride or sulfide ligand in the respective {Pt(mu-H)(mu-S)Pt} and {Pt(mu-S)2Pt} cores enables the closure of the reaction cycle involving complexes 1-5. Theoretical calculations support the existence of the undetected intermediates proposed for conversion from 1 to 2 and from 3 to 2 and also account for the fluxional behavior of 1 in solution. The intermediates proposed are consistent with the experimental results obtained in comparable reactions carried out with labeled reagents, which have provided evidence that complex 1 is the source of the hydride ligands in complexes 2 and 3. Overall, our results show the strong dependence on the experimental conditions for the formation of complexes 1-5 as well as for their further conversion in solution.  相似文献   

10.
The reaction of cationic platinum aqua complexes 2 [Pt(C(6)H(2)[CH(2)NMe(2)](2)-E-4)(OH(2))](X') (X' = SO(3)CF(3), BF(4)) with alkyl halides RX gave various air-stable arenium complexes 3-5 containing a new C-C bond (R = Me, 3; Et, 4; Bn, 5). Electron-releasing oxo-substituents on the aromatic ligand (E = e.g., OH, b; OMe, c) enhance the reactivity of the aqua complex 2 and were essential for arenium formation from alkyl halides different from MeX. This process is initiated by oxidative addition of alkyl halides to the platinum(II) center of 2, which affords (alkyl)(aryl) platinum(IV) complexes (e.g., 9, alkyl = benzyl) as intermediates. Spectroscopic analyses provided direct evidence for a subsequent reversible 1,2-sigmatropic shift of the alkyl group along the Pt-C(aryl) bond, which is identical to repetitive C(arenium)-C(alkyl) bond making and breaking and concerted metal reduction and oxidation. Temperature-dependent NMR spectroscopy revealed DeltaH degrees = -1.3 (+/- 0.1) kJ mol(-1), DeltaS degrees = +3.8 (+/- 0.2) J mol(-1) K(-1), and DeltaG degrees (298) = -2.4 (+/- 0.1) kJ mol(-1) for the formation of the arenium complex 5b from 9 involving the migration of a benzyl group. The arenium complexes were transformed to cyclohexadiene-type addition products 7 or to demetalated alkyl-substituted arenes, 8, thus completing the platinum-mediated formation of a sp(2)-sp(3) C-C bond which is analogous to the aromatic substitution of a [PtX](+) unit by an alkyl cation R(+). The formation of related trimethylsilyl arenium complexes 6 suggests arenium complexes as key intermediates, not only in (metal-mediated) sp(2)-sp(3) C-C bond making and breaking but also in silyl-directed cyclometalation.  相似文献   

11.
Reaction of the dimeric species [(eta3-Ind)Pd(mu-Cl)]2 (1) (Ind = indenyl) with NEt3 gives the complex (eta(3-5)-Ind)Pd(NEt3)Cl (3), whereas the analogous reactions with BnNH2 (Bn = PhCH2) or pyridine (py) afford the complexes trans-L2Pd(eta1-Ind)Cl (L = BnNH2 (4), py (5)). Similarly, the one-pot reaction of 1 with a mixture of BnNH2 and the phosphine ligands PR3 gives the mixed-ligand, amino and phosphine species (PR3)(BnNH2)Pd(eta1-Ind)Cl (R = Cy (6a), Ph (6b)); the latter complexes can also be prepared by addition of BnNH2 to (eta(3-5)-Ind)Pd(PR3)Cl (R = Cy (2a), Ph (2b)). Complexes 6 undergo a gradual decomposition in solution to generate the dinuclear Pd(I) compounds (mu,eta3-Ind)(mu-Cl)Pd2(PR3)2 (R = Cy (7a), Ph (7b)) and the Pd(II) compounds (BnNH2)(PR3)PdCl2 (R = Cy (8a), Ph (8b)), along with 1,1'-biindene. The formation of 7 is proposed to proceed by a comproportionation reaction between in situ-generated Pd(II) and Pd0 intermediates. Interestingly, the reverse of this reaction, disproportionation, also occurs spontaneously to give 2. All new compounds have been characterized by NMR spectroscopy and, in the case of 3, 4, 5, 6a, 7a, 7b, and 8a, by X-ray crystallography.  相似文献   

12.
The reaction of the ground state atomic carbon, C(3P), with simple unsaturated nitrile, C2H3CN(X1A' (vinyl cyanide), is investigated theoretically to explore the probable routes for the formation of carbon-nitrogen-bearing species in extraterrestrial environments particularly of ultralow temperature. Five collision complexes without entrance barrier as a result of the carbon atom addition to the pi systems of C2H3CN are characterized. The B3YLP/6-311G(d,p) level of theory is utilized in obtaining the optimized geometries, harmonic frequencies, and energies of the intermediates, transition states, and products along the isomerization and dissociation pathways of each collision complex. Subsequently, with the facilitation of computed RRKM rate constants at collision energy of 0-10 kcal/mol, the most probable paths for each collision complexes are determined, of which the CCSD(T)/6-311G(d,p) energies are calculated. The major products predicted are exclusively due to the hydrogen atom dissociations, while the products of H2, CN, and CH2 decompositions are found negligible. Among many possible H-elimination products, cyano propargyl (p4) and 3-cyano propargyl (p5) are the most probable, in which p5 can be formed via two intermediates, cyano allene (i8) and cyano vinylmethylene (i6), while p4 is yielded from i8. The study suggests this class of reaction is an important route to the synthesis of unsaturated nitriles at the temperature as low as 10 K, and the results are valuable for future chemical models of interstellar clouds.  相似文献   

13.
The neutral pentacoordinate monoamidinatosilicon(IV) complex 1 (SiN(2)Cl(3) skeleton) and the neutral hexacoordinate monoamidinatosilicon(IV) complexes 2-9 (SiN(3)OF(2), SiN(3)OCl(2), SiN(3)OBr(2), SiN(5)O and SiN(3)O(3) skeletons) were synthesised and characterised by elemental analyses, single-crystal X-ray diffraction (except for 1) and NMR spectroscopy in the solid state and in solution. Compounds 2-9 contain one bidentate monoanionic N,N'-diisopropylbenzamidinato ligand, one bidentate monoanionic ligand derived from 8-hydroxyquinoline and (i) two identical monoanionic ligands (F, Cl, Br, N(3), NCO, NCS, OSO(2)CF(3)) or (ii) one bidentate dianionic benzene-1,2-diolato ligand. The dynamic behavior of 2-4 (SiN(3)OX(2) skeleton; X = F, Cl, Br) and 9 (SiN(3)O(3)) in solution was studied by multinuclear variable-temperature NMR experiments. Compound 1 was synthesised by reaction of SiCl(4) with the corresponding lithium amidinate, and compound 2 was obtained by reaction of 1 with 8-hydroxyquinoline and triethylamine. Compound 2 served as the starting material in the syntheses of 3-9, in which the two chloro ligands of 2 were substituted by two identical (pseudo)halogeno ligands, two trifluoromethanesulfonato ligands or one benzene-1,2-diolato ligand. Compounds 3 and 4 contain the novel SiN(3)OBr(2) and SiN(3)OF(2) skeletons, while compounds 5-7 are the first neutral hexacoordinate silicon(IV) complexes with an SiN(5)O skeleton.  相似文献   

14.
Toluene solutions of Nb(toluene)(2) react with ethylenediamine solutions of K(3)E(7) (E = As, Sb) in the presence of 2,2,2-crypt to give [NbAs(8)](3-) (2) and [NbSb(8)](3-) (3) ions, respectively, in low yields. The (133)Cs NMR spectroscopy, ESIMS results (negative ion mode), and single-crystal X-ray structures of the ions are reported. The complexes have S(8)-like E(8) rings with Nb atoms in the center. The 1:1 complex of 2 with Cs+ was observed in solution and also in the gas phase as the oxidized ion [CsNbAs(8)](1-). The anion 2 selectively binds to Cs(+) in solution even in the presence of excess Na(+). Other gas-phase ions formed include [Cs(2)(NbAs(8))](1-), [KCs(NbAs(8))](1-), [KCs(NbAs(8))(2)](1-), [KNbAs(8)](1-), and [K(2)NbAs(8)](1-).  相似文献   

15.
The mechanism and the thermodynamics of the formation of EX2+, EX4+ and E2X5+ (E = As, P; X = Br, I) was carefully analyzed with MP2/TZVPP calculations and inclusion of entropy and solvation effects (COSMO model approximating CH2Cl2). Thus, as likely intermediates the complexes of Ag+ and one or two EX3 as well as EX3/X2 were optimized. The global minimum isomers of the Ag(EX3)2+ intermediates were found to be P-coordinated Ag(PI3)2+ and (BrPBr2)Ag(PBr3)+ but exclusively halogen coordinated Ag(X2AsX)2+ complexes. Similarly complicated is the situation for the Ag(EX3)(X2)+ intermediates: (I3E)Ag(I2)+, (BrAsBr2)Ag(Br2)+ and (Br3P)(Br-Br)Ag+ complexes were found to be the global minima. Based on all available results likely mechanisms for the formation of the known PX4+, AsBr4+, P2X5+ salts (X = Br, I) from these intermediates were proposed. An explanation for the failure to prepare an AsI4+ salt is also given.  相似文献   

16.
The reaction of quinazolones with POCl(3) to form the corresponding chloroquinazolines occurs in two distinct stages, which can be separated through appropriate temperature control. An initial phosphorylation reaction occurs readily under basic conditions (R(3)N, aq pK(a) > 9) at t < 25 °C to give a variety of phosphorylated intermediates. Pseudodimer formation, arising from reaction between phosphorylated intermediates and unreacted quinazolone, is completely suppressed at these temperatures, provided the system remains basic throughout the POCl(3)addition. Clean turnover of phosphorylated quinazolones to the corresponding chloroquinazoline is then achieved by heating to 70-90 °C. (N)- and (O)-phosphorylated intermediates, involving multiple substitution at phosphorus, have been identified and their reactions monitored using a combination of (1)H, (31)P, and (19)F NMR. Kinetic analysis of the reaction profiles suggest that the various intermediates react with both Cl(-) and Cl(2)P(O)O(-), but product formation arises exclusively from reaction of (O)-phosphorylated intermediates with Cl(-). (O)- and (N)-phosphorylated intermediates equilibrate rapidly on the time scale of the reaction. A minimum of 1 molar equiv of POCl(3) is required for efficient conversion of the intermediates to product.  相似文献   

17.
Novel unsymmetrical SCS'-pincer ligands, 1-[PhNHC(S)]-3-[Ph(2)P(S)NH]-C(6)H(4) (3) and 1-[PhNHC(S)]-3-[Ph(2)P(S)O]C(6)H(4) (7), bearing a thiocarbamoyl moiety in combination with thiophosphorylamino- and thiophosphoryloxy-donating groups, respectively, were obtained via thiophosphorylation of 3-amino- and 3-hydroxy-benzoic acid (thio)anilides 1 and 6. Direct cyclometallation of the central benzene ring in the ligands 3 and 7 in reaction with (PhCN)(2)MCl(2) (M = Pd, Pt) as a metal precursor afforded κ(3)-SCS'-hybrid pincer complexes 8, 9 with 5- and 6-membered fused metallacycles in good to high yields (67-95%). The complexes 8 and 9 were characterized by multinuclear NMR ((31)P, (1)H, (13)C) and IR spectroscopy as well as single-crystal X-ray crystallography. Palladium complexes 8a and 9a were shown to be active catalysts for the Suzuki-Miyaura cross-coupling reaction. In the solid state the ligands 3 and 7 as well as their Pt(II) and Pd(II) complexes 8 and 9 are luminescent at 300 K. The emission of the complexes has the different origin depending on the metal nature.  相似文献   

18.
cis-Stilbene (1) has been epoxidized by a set of diverse oxygen donors [OxD], catalyzed by the Mn(III)(salen)X complexes 3 (X = Cl, PF(6)), to afford a mixture of cis- and trans-epoxides 2. The cis/trans ratios range from 29:71 (extensive isomerization) to 92:8, which depends both on the oxygen source [OxD] and on the counterion X of the catalyst. When (1 alpha,2 beta,3 alpha)-(2-ethenyl-3-methoxycyclopropyl)-benzene (4) is used as substrate, a mechanistic probe which differentiates between radical and cationic intermediates, no cationic ring-opening products are found in this epoxidation reaction; thus, isomerized epoxide product arises from intermediary radicals. The dependence of the diastereoselectivity on the oxygen source is rationalized in terms of a bifurcation step in the catalytic cycle, in which concerted Lewis-acid-activated oxygen transfer competes with stepwise epoxidation by the established Mn(V)(oxo) species. The experimental counterion effect is attributed to the computationally assessed ligand-dependent reaction profiles and stereoselectivities of the singlet, triplet, and quintet spin states available to the manganese species.  相似文献   

19.
The photochemistry of 4-chlorophenol (1) in water and in the presence of cyclodextrins has been studied by means of steady-state and time-resolved experiments. These have shown that 1 undergoes photoheterolysis of the C--Cl bond in the triplet state to yield the 4-hydroxyphenyl cation (3)2 in equilibrium with 4-oxocyclohexa-2,5-dienylidene, (3)3. These triplet intermediates scarcely react with a n nucleophile, such as water, nor abstract hydrogen from this solvent, thus they are long-lived (approximately 1 micros). Specific trapping of both intermediates has been achieved. The cation adds to 2-propenol, k(add) approximately 1.3 x 10(8) m(-1) s(-1), to form the long-lived phenonium ion 11 (with lambda(max) = 290 nm), which then converts to 3-(4-hydroxyphenyl)propane-1,2-diol (10). Carbene (3)3 is trapped by oxygen to give benzoquinone and is reduced by D-glucose (k(q) = 8.5 x 10(6) m(-1) s(-1)) to give the phenoxyl radical (8) and phenol (9). Cyclodextrins have been found to trap the intermediates much more efficiently (k(q) = 9.4 x 10(8) m(-1) s(-1) with beta-CD), which indicates that inclusion is involved. Ground state 1 forms inclusion complexes with 1:1 stoichiometry and association constants of 140 and 300 M(-1) with alpha- and beta-CD, respectively. Complexation does not change the efficiency or the mode of photofragmentation of 1; however, it does influence the course of the reaction because the major portion of the intermediates are reduced to phenol within the cavity (k'(red)> or = 5 x 10(7) s(-1)) either via a radical 8 or via a radical cation 9(+)(.). Under these conditions, neither 2-propenol nor oxygen trap the intermediates to a significant extent.  相似文献   

20.
Recently,aseriesofacetylenicalc0hols'possessingacharacteristic4-en-l-yn-3-olskeletonwasis0latedfromthemarinesp0ngeCribrochalinavasculum(Figure1)andshowedirnmnosuPpresiveandantitumoractivitiesinvitr0.1Toourknowledge,stereoselectivesynthesishasnotbeencarriedoutonthesecomPounds.WedescribehereinthestereoselectivesynthesisoftW0enantiomersof3-hydroxy-4(E)-en-l-yne(A)fromD-gluconolactoneandD-xyloserespectivelyusingacetylenictechnology.Bythepublishedmethod',theacetylenicalcohollwaspreparedfromD-gl…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号