首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The first dinuclear iron(II) complexes of any 4-substituted 3,5-di(2-pyridyl)-4H-1,2,4-triazole ligands, [Fe(II)2(adpt)2(H2O)1.5(CH3CN)2.5](BF4)4 and [Fe(II)2(pldpt)2(H2O)2(CH3CN)2](BF4)4, are presented [where adpt is 4-amino-3,5-di(2-pyridyl)-4H-1,2,4-triazole and pldpt is 4-pyrrolyl-3,5-di(2-pyridyl)-4H-1,2,4-triazole]. Both dinuclear complexes feature doubly triazole bridged iron(II) centers that are found to be [high spin-high spin] at all temperatures, 4-300 K, and to exhibit weak antiferromagnetic coupling. In the analogous monometallic complexes, [Fe(II)(Rdpt)2(X)2](n+), the spin state of the iron(II) center was controlled by appropriate selection of the axial ligands X. Specifically, both of the chloride complexes, [Fe(II)(adpt)2(Cl)2] x 2 MeOH and [Fe(II)(pldpt)2(Cl)2] x 2 MeOH x H2O, were found to be high spin whereas the pyridine adduct [Fe(II)(adpt)2(py)2](BF4)2 was low spin. Attempts to prepare [Fe(II)(pldpt)2(py)2](BF4)2 and the dinuclear analogues [Fe(II)2(Rdpt)2(py)4](BF4)4 failed, illustrating the significant challenges faced in attempts to develop control over the nature of the product obtained from reactions of iron(II) and these bis-bidentate ligands.  相似文献   

2.
In acidic aqueous solution, a cobalt(III) complex containing monodentate N(9)-bound adeninate (ade(-)), cis-[Co(ade-kappaN(9))Cl(en)(2)]Cl (cis-[1]Cl), underwent protonation to the adeninate moiety without geometrical isomerization or decomposition of the Co(III) coordination sphere, and complexes of cis-[CoCl(Hade)(en)(2)]Cl(2) (cis-[2]Cl(2)) and cis-[Co(H(2)ade)Cl(en)(2)]Cl(3) (cis-[3]Cl(3)) could be isolated. The pK(a) values of the Hade and H(2)ade(+) complexes are 6.03(1) and 2.53(12), respectively, at 20 degrees C in 0.1 M aqueous NaCl. The single-crystal X-ray analyses of cis-[2]Cl(2).0.5H(2)O and cis-[3]Cl(2)(BF(4)).H(2)O revealed that protonation took place first at the adeninate N(7) and then at the N(1) atoms to form adenine tautomer (7H-Hade-kappaN(9)) and cationic adeninium (1H,7H-H(2)ade(+)-kappaN(9)) complexes, respectively. On the other hand, addition of NaOH to an aqueous solution of cis-[1]Cl afforded a mixture of geometrical isomers of the hydroxo-adeninato complex, cis- and trans-[Co(ade-kappaN(9))(OH)(en)(2)](+). The trans-isomer of chloro-adeninato complex trans-[Co(ade-kappaN(9))Cl(en)(2)]BF(4) (trans-[1]BF(4)) was synthesized by a reaction of cis-[2](BF(4))(2) and sodium methoxide in methanol. This isomer in acidic aqueous solution was also stable toward isomerization, affording the corresponding adenine tautomer and adeninium complexes (pK(a) = 5.21(1) and 2.48(9), respectively, at 20 degrees C in 0.1 M aqueous NaCl). The protonated product of trans-[Co(7H-Hade-kappaN(9))Cl(en)(2)](BF(4))(2).H(2)O (trans-[2](BF(4))(2).H(2)O) could also be characterized by X-ray analysis. Furthermore, the hydrogen-bonding interactions of the adeninate/adenine tautomer complexes cis-[1]BF(4), cis-[2](BF(4))(2), and trans-[2](BF(4))(2) with 1-cyclohexyluracil in acetonitrile-d(3) were investigated by (1)H NMR spectroscopy. The crystal structure of trans-[Co(ade)(H(2)O)(en)(2)]HPO(4).3H(2)O, which was obtained by a reaction of trans-[Co(ade)(OH)(en)(2)]BF(4) and NaH(2)PO(4), was also determined.  相似文献   

3.
The synthesis and magnetic properties of the compounds [HNEt(3)][Fe(2)(OMe)(Ph-sao)(2) (Ph-saoH)(2)].5MeOH (1.5MeOH), [Fe(3)O(Et-sao)(O(2)CPh)(5)(MeOH)(2)].3MeOH (2.3MeOH), [Fe(4)(Me-sao)(4)(Me-saoH)(4)] (3), [HNEt(3)](2)[Fe(6)O(2)(Me-sao)(4)(SO(4))(2)(OMe)(4)(MeOH)(2)] (4), [Fe(8)O(3)(Me-sao)(3)(tea)(teaH)(3)(O(2)CMe)(3)] (5), [Fe(8)O(3)(Et-sao)(3)(tea)(teaH)(3)(O(2)CMe)(3)] (6), and [Fe(8)O(3)(Ph-sao)(3)(tea)(teaH)(3)(O(2)CMe)(3)] (7) are reported (Me-saoH(2) is 2'-hydroxyacetophenone oxime, Et-saoH(2) is 2'-hydroxypropiophenone oxime and Ph-saoH(2) is 2-hydroxybenzophenone oxime). 1-7 are the first Fe(III) compounds synthesised using the derivatised salicylaldoxime ligands, R-saoH(2). 1 is prepared by treatment of Fe(2)(SO(4))(3).6H(2)O with Ph-saoH(2) in the presence of NEt(3) in MeOH; 2 prepared by treatment of Fe(ClO(4))(2).6H(2)O with Et-saoH(2) and NaO(2)CPh in the presence of NEt(4)OH in MeOH; 3 prepared by treatment of Fe(ClO(4))(2).6H(2)O with Me-saoH(2) and NaO(2)CCMe(3) in the presence of NEt(4)OH in MeOH; and 4 prepared by treatment of Fe(2)(SO(4))(3).6H(2)O with Me-saoH(2) in the presence of NEt(3) in MeOH. 4 is a rare example of a polynuclear iron complex containing a coordinated SO(4)(2-) ion. Compounds 5-7 are prepared by treatment of Fe(O(2)CMe)(2) with Me-saoH(2) (5), Et-saoH(2) (6), Ph-saoH(2) (7) in the presence of H(3)tea (triethanolamine) in MeOH, and represent the largest nuclearity Fe(III) clusters containing salicyladoxime-based ligands, joining a surprisingly small family of characterised octanuclear Fe complexes. Variable temperature magnetic susceptibilty measurements of 1, 3 and 5-7 reveal all five complexes possess S = 0 spin ground states; 2 possesses an S = 1/2 spin ground state, while 4 has an S = 4 +/- 1 spin ground state.  相似文献   

4.
The elongated dihydrogen complex [formula: see text](1) reacts with 1,1-diphenyl-2-propyn-1-ol and 2-methyl-3-butyn-2-ol to give the hydride-hydroxyvinylidene-pi-alkynol derivatives [OsH{=C=CHC(OH)R2}{eta2-HC(triple bond)CC(OH)R2}(PiPr3)2]BF4 (R = Ph (2), Me (3)), where the pi-alkynols act as four-electron donor ligands. Treatment of 2 and 3 with HBF(4) and coordinating solvents leads to the dicationic hydride-alkenylcarbyne compounds [OsH((triple bond)CCH=CR2)S2(PiPr3)2][BF4]2 (R = Ph, S = H(2)O (4), CH(3)CN (5); R = Me, S = CH(3)CN (6)), which in acetonitrile evolve into the alkenylcarbene complexes [Os(=CHCH=CR2)(CH3CN)3(PiPr3)2][BF4](2) (R = Ph (7), Me (8)) by means of a concerted 1,2-hydrogen shift from the osmium to the carbyne carbon atom. Treatment of 2-propanol solutions of 5 with NaCl affords OsHCl2((triple bond)CCH=CPh2)(PiPr3)2 (10), which reacts with AgBF(4) and acetonitrile to give [OsHCl((triple bond)CCH=CPh2)(CH3CN)(PiPr3)2]BF(4) (11). In this solvent complex 11 is converted to [OsCl(=CHCH=CPh2)(CH3CN)2(PiPr3)2]BF(4) (12). Complex 5 reacts with CO to give [Os(=CHCH=CPh2)(CO)(CH3CN)2(PiPr3)2][BF(4)](2) (15). DFT calculations and kinetic studies for the hydride-alkenylcarbyne to alkenylcarbene transformation show that the difference of energy between the starting compounds and the transition states, which can be described as eta(2)-carbene species [formula: see text] increases with the basicity of the metallic center. The X-ray structures of 4 and 7 and the rotational barriers for the carbene ligands of 7, 8, and 12 are also reported.  相似文献   

5.
A new synthetic procedure has been developed in Mn cluster chemistry involving reductive aggregation of permanganate (MnO4-) ions in MeOH in the presence of benzoic acid, and the first products from its use are described. The reductive aggregation of NBu(n)4MnO4 in MeOH/benzoic acid gave the new 4Mn(IV), 8Mn(III) anion [Mn12O12(OMe)2(O2CPh)16(H2O)2]2-, which was isolated as a mixture of two crystal forms (NBu(n)4)2[Mn12O12(OMe)2(O2CPh)16(H2O)2].2H2O.4CH2Cl2 (1a) and (NBu(n)4)2[Mn12O12(OMe)2(O2CPh)16(H2O)2].2H2O.CH2Cl2 (1b). The anion of 1 contains a central [Mn(IV)4(mu3-O)2(mu-O)2(mu-OMe)2]6+ unit surrounded by a nonplanar ring of eight Mn(III) atoms that are connected to the central Mn4 unit by eight bridging mu3-O2- ions. This compound is very similar to the well-known [Mn12O12(O2CR)16(H2O)4] complexes (hereafter called "normal Mn12"), with the main difference being the structure of the central cores. Longer reaction times (approximately 2 weeks) led to isolation of polymeric [Mn(OMe)(O2CPh)2]n2, which contains a linear chain of repeating [Mn(III)(mu-O2CPh)2(mu-OMe)Mn(III)] units. The chains are parallel to each other and interact weakly through pi-stacking between the benzoate rings. When KMnO4 was used instead of NBu(n)4MnO4, two types of compounds were obtained, [Mn12O12(O2CPh)16(H2O)4] (3), a normal Mn12 complex, and [Mn4O2(O2CPh)8(MeOH)4].2MeOH (4.2MeOH), a new member of the Mn4 butterfly family. The cyclic voltammogram of 1 exhibits three irreversible processes, two reductions and one oxidation. One-electron reduction of 1 by treatment with 1 equiv of I- in CH2Cl2 gave (NBu(n)4[Mn12O12(O2CPh)16(H2O)3].6CH2Cl2 (5.6CH2Cl2), a normal Mn12 complex in a one-electron reduced state. The variable-temperature magnetic properties of 1, 2, and 5 were studied by both direct current (dc) and alternating current (ac) magnetic susceptibility measurements. Variable-temperature dc magnetic susceptibility studies revealed that (i) complex 1 possesses an S = 6 ground state, (ii) complex 2 contains antiferromagnetically coupled chains, and (iii) complex 5 is a typical [Mn12]- cluster with an S = 19/2 ground state. Variable-temperature ac susceptibility measurements suggested that 5 and both isomeric forms of 1 (1a,b) are single-molecule magnets (SMMs). This was confirmed by the observation of hysteresis loops in magnetization vs dc field scans. In addition, 1a,b, like normal Mn12 clusters, display both faster and slower relaxing magnetization dynamics that are assigned to the presence of Jahn-Teller isomerism.  相似文献   

6.
A series of vinyl, aryl, acetylide and silyl complexes [Ru(R)(kappa2-MI)(CO)(PPh3)2] (R = CH=CH2, CH=CHPh, CH=CHC6H4CH3-4, CH=CH(t)Bu, CH=2OH, C(C triple bond CPh)=CHPh, C6H5, C triple bond CPh, SiMe2OEt; MI = 1-methylimidazole-2-thiolate) were prepared from either [Ru(R)Cl(CO)(PPh3)2] or [Ru(R)Cl(CO)(BTD)(PPh3)2](BTD = 2,1,3-benzothiadiazole) by reaction with the nitrogen-sulfur mixed-donor ligand, 1-methyl-2-mercaptoimidazole (HMI), in the presence of base. In the same manner, [Os(CH=CHPh)(kappa2-MI)(CO)(PPh3)2] was prepared from [Os(CH=CHPh)(CO)Cl(BTD)(PPh3)2]. The in situ hydroruthenation of 1-ethynylcyclohexan-1-ol by [RuH(CO)Cl(BTD)(PPh3)2] and subsequent addition of the HMI ligand and excess sodium methoxide yielded the dehydrated 1,3-dienyl complex [Ru(CH=CHC6H9)(kappa2-MI)(CO)(PPh3)2]. Dehydration of the complex [Ru(CH=CHCPh2OH)(kappa2-MI)(CO)(PPh3)2] with HBF4 yielded the vinyl carbene [Ru(=CHCH=CPh2)(kappa2-MI)(CO)(PPh3)2]BF4. The hydride complexes [MH(kappa2-MI)(CO)(PPh3)2](M = Ru, Os) were obtained from the reaction of HMI and KOH with [RuHCl(CO)(PPh3)3] and [OsHCl(CO)(BTD)(PPh3)2], respectively. Reaction of [Ru(CH=CHC6H4CH3-4)(kappa2-MI)(CO)(PPh3)2] with excess HC triple bond CPh leads to isolation of the acetylide complex [Ru(C triple bond CPh)(kappa2-MI)(CO)(PPh3)2], which is also accessible by direct reaction of [Ru(C triple bond CPh)Cl(CO)(BTD)(PPh3)2] with 1-methyl-2-mercaptoimidazole and NaOMe. The thiocarbonyl complex [Ru(CPh = CHPh)Cl(CS)(PPh3)2] reacted with HMI and NaOMe without migration to yield [Ru(CPh= CHPh)(kappa2-MI)(CS)(PPh3)2], while treatment of [Ru(CH=CHPh)Cl(CO)2(PPh3)2] with HMI yielded the monodentate acyl product [Ru{eta(1)-C(=O)CH=CHPh}(kappa2-MI)(CO)(PPh3)2]. The single-crystal X-ray structures of five complexes bearing vinyl, aryl, acetylide and dienyl functionality are reported.  相似文献   

7.
The tetradentate imino-carboxylate ligand [L](2)(-) chelates the equatorial sites of Ni(II) to give the complex [Ni(L)(MeOH)(2)] in which a Ni(II) center is bound in an octahedral coordination environment with MeOH ligands occupying the axial sites. Lanthanide (Ln) and Group II metal ions (M) template the aggregation of six [Ni(L)] fragments into the octahedral cage aggregates (M[Ni(L)](6))(x)(+) (1: M = Sr(II); x = 2,2: M = Ba(II); x = 2, 3: M = La(III); x = 3, 4: M = Ce(III); x = 3, 5: M = Pr(III); x = 3, and 6: M = Nd(III); x = 3). In the presence of Group I cations, however, aggregates composed of the alkali metal-oxide cations template various cage compounds. Thus, Na(+) forms the trigonal bipyramidal [Na(5)O](3+) core within a tricapped trigonal prismatic [Ni(L)](9) aggregate to give ((Na(5)O) subset [Ni(L)](9)(MeOH)(3))(BF(4))(2).OH.CH(3)OH, 7. Li(+) and Na(+) together form a mixed Li(+)/Na(+) core comprising distorted trigonal bipyramidal [Na(3)Li(2)O](3+) within an approximately anti-square prismatic [Ni(L)](8) cage in ((Na(3)Li(2)O) subset [Ni(L)](8)(CH(3)OH)(1.3)(BF(4))(0.7))(BF(4))(2.3).(CH(3)OH)(2.75).(C(4)H(10)O)(0.5), 8, while in the presence of Li(+), a tetrahedral [Li(4)O](2+) core within a hexanuclear open cage [Ni(L)](6) in ((Li(4)O) subset [Ni(L)](6)(CH(3)OH)(3))2ClO(4).1.85CH(3)OH, 9, is produced. In the presence of H(2)O, the Cs(+) cation induces the aggregation of the [Ni(L)(H(2)O)(2)] monomer to give the cluster Cs(2)[Ni(L)(H(2)O)(2)](6).2I.4CH(3)OH.5.25H(2)O, 10. Analysis by electronic spectroscopy and mass spectrometry indicates that in solution the trend in stability follows the order 1-6 > 7 > 8 approximately 9. Magnetic susceptibility data indicate that there is net antiferromagnetic exchange between magnetic centers within the cages.  相似文献   

8.
Reaction between EuCl(2) and 2,2'-bipyrimidine (bpm) in de-oxygenated water afforded a cationic molecular complex [EuCl(bpm)(2)(H(2)O)(4)][Cl]·H(2)O (1). When performed in an organic solvent such as THF or methanol, the same reaction yielded a 3-dimensional coordination polymer of formula [EuCl(2)(bpm)(MeOH)(0.5)](∞) (2) in which both bpm and the chloride ions act as linkers between the Eu(II) ions. Upon replacing Cl(-) by I(-), two coordination polymers of formula {[Eu(bpm)(2)(H(2)O)(3)][I](2)·0.5bpm}(∞) (3) and {[Eu(I)(bpm)(MeOH)][I]}(∞) (4) were obtained from reaction in water and methanol, respectively. All these compounds were characterized by X-ray crystallography. Investigations of the magnetic properties revealed a weak antiferromagnetic coupling in 2, while 3 and 4 showed a weak ferromagnetic coupling at low temperature.  相似文献   

9.
Treatment in acetonitrile at -30 C of the hydride-alkenylcarbyne complex [OsH([triple bond]CCH=CPh2)(CH3CN)2(P(i)Pr3)2][BF4]2 (1) with (t)BuOK produces the selective deprotonation of the alkenyl substituent of the carbyne and the formation of the bis-solvento hydride-allenylidene derivative [OsH(=C=C=CPh2)(CH3CN)2(P(i)Pr3)2]BF4 (2), which under carbon monoxide atmosphere is converted into [Os(CH=C=CPh2)(CO)(CH3CN)2(P(i)Pr3)2]BF4 (3). When the treatment of 1 with (t)BuOK is carried out in dichloromethane at room temperature, the fluoro-alkenylcarbyne [OsHF([triple bond]CCH=CPh2)(CH3CN)(P(i)Pr3)2]BF4 (4) is isolated. Complex 2 reacts with terminal alkynes. The reactions with phenylacetylene and cyclohexylacetylene afford [Os[(E)-CH=CHR](=C=C=CPh2)(CH3CN)2(P(i)Pr3)2]BF4 (R = Ph (5), Cy (6)), containing an alkenyl ligand beside the allenylidene, while the reaction with acetylene in dichloromethane at -20 degrees C gives the hydride-allenylidene-pi-alkyne [OsH(=C=C=CPh2)(eta2-HC[triple bond]CH)(P(i)Pr3)2]BF4 (7), with the alkyne acting as a four-electron donor ligand. In acetonitrile under reflux, complexes 5 and 6 are transformed into the osmacyclopentapyrrole compounds [Os[C=C(CPh2CR=CH)CMe=NH](CH3CN)2]BF4 (R = Ph (8), Cy (9)), as a result of the assembly of the allenylidene ligand, the alkenyl group, and an acetonitrile molecule. The X-ray structures of 2, 5, and 8 are also reported.  相似文献   

10.
Cotton FA  Murillo CA  Wang X  Yu R 《Inorganic chemistry》2004,43(26):8394-8403
Reaction of racemic cis-Rh(2)(C(6)H(4)PPh(2))(2)(OAc)(2)(HOAc)(2) with excess Me(3)OBF(4) in CH(3)CN results in the formation of racemic cis-[Rh(2)(C(6)H(4)PPh(2))(2)(CH(3)CN)(6)](BF(4))(2).0.5H(2)O (1.0.5H(2)O), an ionic dirhodium complex which has two cisoid nonlabile orthometalated phosphine bridging anions and six labile CH(3)CN ligands in equatorial and axial positions. Reactions of 1 with tetraethylammonium salts of the linear dicarboxylates, oxalate, terephthalate, and 4,4'-biphenyl-dicarboxylate, in organic solvents, produced racemic crystals of the triangular compounds [Rh(2)(C(6)H(4)PPh(2))(2)](3)(C(2)O(4))(3)(py)(6).6MeOH.H(2)O (2.6MeOH.H(2)O), [Rh(2)(C(6)H(4)PPh(2))(2)](3)(O(2)CC(6)H(4)CO(2))(3)(DMF)(6).6.5DMF.0.5H(2)O (3.6.5DMF.0.5H(2)O), and [Rh(2)(C(6)H(4)PPh(2))(2)](3)(O(2)CC(6)H(4)C(6)H(4)CO(2))(3)(py)(6).4.5CH(3)OH.0.75H(2)O (4.4.5CH(3)OH.0.75H(2)O), respectively. All compounds are electrochemically active. The relative chiralities of the dirhodium units in each triangle have been established using a combination of data from X-ray crystallography and (31)P NMR spectroscopy.  相似文献   

11.
Reactions of the arene-linked bis(pyrazolyl)methane ligands m-bis[bis(1-pyrazolyl)methyl]benzene (m-[CH(pz)2]2C6H4, Lm) and 1,3,5-tris[bis(1-pyrazolyl)methyl]benzene (1,3,5-[CH(pz)2]3C6H3, L3) with BF4- salts of divalent iron, zinc, and cadmium result in fluoride abstraction from BF4- and formation of fluoride-bridged metallacyclic complexes. Treatment of Fe(BF4)2.6H2O and Zn(BF4)2.5H2O with Lm leads to the complexes [Fe2(mu-F)(mu-Lm)2](BF4)3 (1) and [Zn2(mu-F)(mu-Lm)2](BF4)3 (2), in which a single fluoride ligand and two Lm molecules bridge the two metal centers. The reaction of [Cd2(thf)5](BF4)4 with Lm results in the complex [Cd2(mu-F)2(mu-Lm)2](BF4)2 (3), which contains dimeric cations in which two fluoride and two Lm ligands bridge the cadmium centers. Equimolar amounts of the tritopic ligand L3 and Zn(BF4)2.5H2O react to give the related monofluoride-bridged complex [Zn2(mu-F)(mu-L3)2](BF4)3 (4), in which one bis(pyrazolyl)methane unit on each ligand remains unbound. NMR spectroscopic studies show that in acetonitrile the zinc metallacycles observed in the solid-state remain intact in solution.  相似文献   

12.
Strapping two salicylaldoxime units together with aliphatic α,Ω-aminomethyl links in the 3-position gives ligands which allow the assembly of the polynuclear complexes [Fe(7)O(2)(OH)(6)(H(2)L1)(3)(py)(6)](BF(4))(5)·6H(2)O·14MeOH (1·6H(2)O·14MeOH), [Fe(6)O(OH)(7)(H(2)L2)(3)](BF(4))(3)·4H(2)O·9MeOH (2·4H(2)O·9MeOH) and [Mn(6)O(2)(OH)(2)(H(2)L1)(3)(py)(4)(MeCN)(2)](BF(4))(5)(NO(3))·3MeCN·H(2)O·5py (3·3MeCN·H(2)O·5py). In each case the metallic skeleton of the cluster is based on a trigonal prism in which two [M(III)(3)O] triangles are tethered together via three helically twisted double-headed oximes. The latter are present as H(2)L(2-) in which the oximic and phenolic O-atoms are deprotonated and the amino N-atoms protonated, with the oxime moieties bridging across the edges of the metal triangles. Both the identity of the metal ion and the length of the straps connecting the salicylaldoxime units have a major impact on the nuclearity and topology of the resultant cluster, with, perhaps counter-intuitively, the longer straps producing the "smallest" molecules.  相似文献   

13.
The reaction of [NEt(4)](2)[Fe(2)OCl(6)] with sodium benzoate, 4,6-dimethyl-2-hydroxypyrimidine (dmhp), and 1,1,1-tris(hydroxymethyl)ethane (H(3)thme) gives the undecametallic compound [NEt(4)][Fe(11)O(4)(O(2)CPh)(10)(thme)(4)(dmhp)(2)Cl(4)]. X-ray crystallography, EPR spectroscopy, bulk magnetic susceptibility studies, and low-temperature single-crystal magnetic measurements were used to characterize the compound. Magnetic measurements indicate an S = (11)/(2) ground state with the parameters g = 2.03 and D = -0.46 cm(-)(1). Single-crystal magnetic studies show hysteresis of molecular origin at T < 1.2 K with fast quantum mechanical tunneling at zero field.  相似文献   

14.
Synthetic methods are described that have resulted in the formation of seven heterometallic complexes, all of which contain partially deprotonated forms of the ligand triethanolamine (teaH(3)). These compounds are [Mn(III)(4)Co(III)(2)Co(II)(2)O(2)(teaH(2))(2)(teaH)(0.82)(dea)(3.18)(O(2)CMe)(2)(OMe)(2)](BF(4))(2)(O(2)CMe)(2)·3.18MeOH·H(2)O (1), [Mn(II)(2)Mn(III)(2)Co(III)(2)(teaH)(4)(OMe)(2)(acac)(4)](NO(3))(2)·2MeOH (2), [Mn(III)(2)Ni(II)(4)(teaH)(4)(O(2)CMe)(6)]·2MeCN (3), [Mn(III)(2)Co(II)(2)(teaH)(2)(sal)(2)(acac)(2)(MeOH)(2)]·2MeOH (4), [Mn(II)(2)Fe(III)(2)(teaH)(2)(paa)(4)](NO(3))(2)·2MeOH·CH(2)Cl(2) (5), [Mn(II)Mn(III)(2)Co(III)(2)O(teaH)(2)(dea)(Iso)(OMe)(F)(2)(Phen)(2)](BF(4))(NO(3))·3MeOH (6) and [Mn(II)(2)Mn(III)Co(III)(2)(OH)(teaH)(3)(teaH(2))(acac)(3)](NO(3))(2)·3CH(2)Cl(2) (7). All of the compounds contain manganese, combined with 3d transition metal ions such as Fe, Co and Ni. The crystal structures are described and examples of 'rods', tetranuclear 'butterfly' and 'triangular' Mn(3) cluster motifs, flanked in some cases by diamagnetic cobalt(III) centres, are presented. Detailed DC and AC magnetic susceptibility and magnetization studies, combined with spin Hamiltonian analysis, have yielded J values and identified the spin ground states. In most cases, the energies of the low-lying excited states have also been obtained. The features of note include the 'inverse butterfly' spin arrangement in 2, 4 and 5. A S = 5/2 ground state occurs, for the first time, in the Mn(III)(2)Mn(II) triangular moiety within 6, the many other reported [Mn(3)O](6+) examples having S = ? or 3/2 ground states. Compound 7 provides the first example of a Mn(II)(2)Mn(III) triangle, here within a pentanuclear Mn(3)Co(2) cluster.  相似文献   

15.
The self-assembly of Co(O(2)CPh)(2) with a 2,3-dihydroxyquinoxaline (H(2)dhq) linker has revealed a new two-dimensional cluster-based compound, [Co(4)(OMe)(2)(O(2)CPh)(2)(dhq)(2)(MeOH)(2)](n), which shows spin-canted magnetization and a definite magnetic hysteresis loop.  相似文献   

16.
Treatment of [Cu2(dcpm)2]Y2 (dcpm = bis(dicyclohexylphosphino)methane, Y = ClO4-, BF4-, PF6-, CF3SO3-) with refluxing MeOH in the presence of KOH afforded hydride complexes [Cu3(dcpm)3(mu3-H)]Y2 (1) in about 85% yield. Refluxing [Cu2(dcpm)2](PF6)2 with MeOH in the presence of NH3.H2O and air gave a carboxylate complex [Cu2(dcpm)2(O2CCH2OH)]PF6 (2) in 40% yield. All of the complexes 1 and 2 have been characterized by X-ray crystallography. The Cu3 cores in 1 are almost perfectly shielded by the dcpm ligands. Intense photoluminescence was observed for 1 both in the solid state and in solution.  相似文献   

17.
采用乙醚蒸汽扩散法,由四氟合硼酸四乙腈合铜(Ⅰ)、4,4′-联吡啶、二(2-二苯基膦基)苯基醚或者三苯基膦的反应后的二氯甲烷和乙腈混合溶液中,晶化出[Cu2(4,4′-bipy)(POP)2(CH3CN)2(C2H5O)2](BF4)2 (1)和[Cu2(4,4′-bipy)(PPh3)4(CH3CN)2](BF4)2 (2)两种配合物。对它们进行了元素分析和X射线衍射单晶结构表征,同时测定了UV-Vis光谱及相应的激发态寿命。配合物1和2展示了较好的光物理特性,在275 nm紫外光的激发下,固体粉末样品的最大发射峰位分别位于527和483 nm,这归因于金属干扰的配体内部跃迁。  相似文献   

18.
Depending on the synthetic conditions, five heterometallic Mn(III)Fe(II) polynuclear compounds with the same ratio of constituents, 2[Mn(acacen)](+)/[Fe(CN)(5)NO](2-), of different nuclearity and dimensionality (0D, 1D, 2D) were isolated. A [Mn(acacen)MeOH](2)[Fe(CN)(5)NO]·1.5MeOH, 1 complex has been prepared by reaction of Mn(III)/Schiff base (SB) complex, [Mn(acacen)Cl] (H(2)acacen is N,N'-ethylenebis(acetylacetoneimine)) with sodium nitroprusside (NP). Single crystal X-ray diffraction analyses reveal that crystallization of 1 from coordinating or non-coordinating solvents results in different coordination polynuclear materials: from C(2)H(5)OH [{Mn(acacen)H(2)O}(2)Fe(CN)(5)NO]·C(2)H(5)OH, 2, a trinuclear complex is formed; from CH(3)CN [{Mn(acacen)H(2)O}(4)Fe(CN)(5)NO][Fe(CN)(5)NO]·4CH(3)CN, an ionic compound with a pentanuclear bimetallic cation is formed 3; from i-C(3)H(7)OH [{Mn(acacen)}(2)(i-PrOH)Fe(CN)(5)NO](n), a coordination chain polymer 4 is formed; from toluene [{Mn(acacen)}(2)Fe(CN)(5)NO](n), a layered network 5 is formed. As the magnetic measurements show, for all compounds the weak interaction between Mn(III)S = 2 spins through the NP bridge is antiferromagnetic and exhibits no significant photoactivity.  相似文献   

19.
The new ytterbium(II) thiocyanate complex [Yb(NCS)2(thf)2] (1), synthesised by redox transmetallation between [Hg(SCN)2] and ytterbium metal in THF at room temperature, gave monomeric, eight coordinate [Yb-(NCS)2(dme)3] (2, dme = 1,2-dimethoxyethane) on crystallisation from DME, and is a powerful, synthetically useful reductant. Thus, oxidation of 1 with Hg(SCN)2, Hg(C6F5)2/HOdpp (HOdpp = 2,6-diphenylphenol), TlCp (Cp = C5H5 or CH3C5H4), Tl(Ph2pz) (Ph2pz = 3,5-diphenylpyrazolate) and CCl3CCl3 in THF yielded the ytterbium(II) complexes [Yb(NCS)3(thf)4] (3), [Yb-(NCS)2(Odpp)(thf)3](4), [Yb(NCS)2Cp-(thf)3] (Cp = C5H5 (5), CH3C5H4 (6)), [Yb(NCS)2(Ph2pz)(thf)4] (7) and [Yb(NCS)2Cl(thf)4] (8). In the solid state, complexes 4, 6 and 7 were shown by X-ray crystallography to be six, eight and eight coordinate monomers, respectively. Exclusively terminal, N-bound transoid thiocyanate bonding is observed with eta1-Odpp (4), eta5/-C5H4Me (6) and eta2-Ph2Pz (7) ligands attached approximately perpendicular to the N...N vector. The chloride complex 8 is not a molecular species, but consists of discrete, seven coordinate [YbCl2(thf)5] cations and [Yb(NCS)4(thf)3] anions. By contrast, oxidation of 1 with TlO2CPh gave a mixture of [[Yb(NCS)-(O2CPh)2(thf)2]2] (9) and 3 through rearrangement of an initially formed [Yb(NCS)2(O2CPh)] species. The X-ray structure of 9 indicates a dimeric complex with a (Yb(mu-O2CPh)4Yb] core that contains both bridging bidentate and bridging tridentate benzoate groups, and with a terminal N-bound thiocyanate and two THF ligands on each ytterbium. Reduction of Ph2CO with 1 in THF yielded the dinuclear complex [[Yb(NCS)2(thf)3]2(mu-OC(Ph)2C(Ph)2O)] (10), in which two octahedral Yb centres are bridged by a 1,1,2,2-tetraphenylethane-1,2-diolate ligand, derived from reductive coupling of the benzophenone reagent.  相似文献   

20.
The acetylacetonate complexes [Ni(2)L(1)(acac)(MeOH)] x H(2)O, 1 x H(2)O and [Ni(2)L(3)(acac)(MeOH)] x 1.5H(2)O, 2 x 1.5H(2)O (H(3)L(1) = (2-(2-hydroxyphenyl)-1,3-bis[4-(2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine and H(3)L(3) = (2-(5-bromo-2-hydroxyphenyl)-1,3-bis[4-(5-bromo-2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine) were prepared and fully characterised. Their crystal structures show that they are dinuclear complexes, extended into chains by hydrogen bond interactions. These compounds were used as starting materials for the isolation of the corresponding [Ni(2)HL(x)(o-O(2)CC(6)H(4)CO(2))(H(2)O)] x n MeOH and [Ni(2)HL(x)(O(2)CCH(2)CO(2))(H(2)O)]x nH(2)O dicarboxylate complexes (x = 1, 3; n = 1-3). The crystal structures of [Ni(2)HL(1)(o-O(2)CC(6)H(4)CO(2))(H(2)O)] x MeOH, 3 x MeOH, [Ni(2)HL(3)(o-O(2)CC(6)H(4)CO(2))(H(2)O)] x 3 MeOH, 4 x 3 MeOH and [Ni(2)HL(1)(O(2)CCH(2)CO(2))(H(2)O)] x 2.5H(2)O x 0.25 MeOH x MeCN, 5 x 2.5H(2)O x 0.25 MeOH x MeCN, were solved. Complexes 3-5 show dinuclear [Ni(2)HL(x)(dicarboxylate)(H(2)O)] units, expanded through hydrogen bonds that involve carboxylate and water ligands, as well as solvate molecules. The variable temperature magnetic susceptibilities of all the complexes show an intramolecular ferromagnetic coupling between the Ni(II) ions, which is attempted to be rationalized by comparison with previous results and in the light of molecular orbital treatment. Magnetisation measurements are in accord with a S = 2 ground state in all cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号