首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of the unusually fast reaction of cis- and trans-[Ru(terpy)(NH3)2Cl]2+ (with respect to NH3; terpy=2,2':6',2"-terpyridine) with NO was studied in acidic aqueous solution. The multistep reaction pathway observed for both isomers includes a rapid and reversible formation of an intermediate Ru(III)-NO complex in the first reaction step, for which the rate and activation parameters are in good agreement with an associative substitution behavior of the Ru(III) center (cis isomer, k1=618 +/- 2 M(-1) s(-1), DeltaH(++) = 38 +/- 3 kJ mol(-1), DeltaS(++) = -63 +/- 8 J K(-1) mol(-1), DeltaV(++) = -17.5 +/- 0.8 cm3 mol(-1); k -1 = 0.097 +/- 0.001 s(-1), DeltaH(++) = 27 +/- 8 kJ mol(-1), DeltaS(++) = -173 +/- 28 J K(-1) mol(-1), DeltaV(++) = -17.6 +/- 0.5 cm3 mol(-1); trans isomer, k1 = 1637 +/- 11 M(-1) s(-1), DeltaH(++) = 34 +/- 3 kJ mol(-1), DeltaS(++) = -69 +/-11 J K(-1) mol(-1), DeltaV(++) = -20 +/- 2 cm3 mol(-1); k(-1)=0.47 +/- 0.08 s(-1), DeltaH(++)=39 +/- 5 kJ mol(-1), DeltaS(++) = -121 +/-18 J K(-1) mol(-1), DeltaV(++) = -18.5 +/- 0.4 cm3 mol(-1) at 25 degrees C). The subsequent electron transfer step to form Ru(II)-NO+ occurs spontaneously for the trans isomer, followed by a slow nitrosyl to nitrite conversion, whereas for the cis isomer the reduction of the Ru(III) center is induced by the coordination of an additional NO molecule (cis isomer, k2=51.3 +/- 0.3 M(-1) s(-1), DeltaH(++) = 46 +/- 2 kJ mol(-1), DeltaS(++) = -69 +/- 5 J K(-1) mol(-1), DeltaV(++) = -22.6 +/- 0.2 cm3 mol(-1) at 45 degrees C). The final reaction step involves a slow aquation process for both isomers, which is interpreted in terms of a dissociative substitution mechanism (cis isomer, DeltaV(++) = +23.5 +/- 1.2 cm3 mol(-1); trans isomer, DeltaV(++) = +20.9 +/- 0.4 cm3 mol(-1) at 55 degrees C) that produces two different reaction products, viz. [Ru(terpy)(NH3)(H2O)NO]3+ (product of the cis isomer) and trans-[Ru(terpy)(NH3)2(H2O)]2+. The pi-acceptor properties of the tridentate N-donor chelate (terpy) predominantly control the overall reaction pattern.  相似文献   

2.
Ligand substitution equilibria of different alkylcobalamins (RCbl, R = Me, CH(2)Br, CH(2)CF(3), CHF(2), CF(3)) with cyanide have been studied. It was found that CN(-) first substitutes the 5,6-dimethylbenzimidazole (Bzm) moiety in the alpha-position, followed by substitution of the alkyl group in the beta-position trans to Bzm. The formation constants K(CN) for the 1:1 cyanide adducts (R(CN)Cbl) were found to be 0.38 +/- 0.03, 0.43 +/- 0.03, and 123 +/- 9 M(-1) for R = Me, CH(2)Br, and CF(3), respectively. In the case of R = CH(2)CF(3), the 1:1 adduct decomposes in the dark with CN(-) to give (CN)(2)Cbl. The unfavorable formation constants for R = Me and CH(2)Br indicate the requirement of very high cyanide concentrations to produce the 1:1 complex, which cause the kinetics of the displacement of Bzm to be too fast to follow kinetically. The kinetics of the displacement of Bzm by CN(-) could be followed for R = CH(2)CF(3) and CF(3) to form CF(3)CH(2)(CN)Cbl and CF(3)(CN)Cbl, respectively, in the rate-determining step. Both reactions show saturation kinetics at high cyanide concentration, and the limiting rate constants are characterized by the activation parameters: R = CH(2)CF(3), DeltaH = 71 +/- 1 kJ mol(-1), DeltaS = -25 +/- 4 J K(-1) mol(-1), and DeltaV = +8.9 +/- 1.0 cm(3) mol(-1); R = CF(3), DeltaH = 77 +/- 3 kJ mol(-1), DeltaS = +44 +/- 11 J K(-1) mol(-1), and DeltaV = +14.8 +/- 0.8 cm(3) mol(-1), respectively. These parameters are interpreted in terms of an I(d) and D mechanism for R = CH(2)CF(3) and CF(3), respectively. The results of the study enable the formulation of a general mechanism that can account for the substitution behavior of all investigated alkylcobalamins including coenzyme B(12).  相似文献   

3.
Paramagnetic effects on the relaxation rate and shift difference of the (17)O nucleus of bulk water enable the study of water exchange mechanisms on transition metal complexes by variable temperature and variable pressure NMR. The water exchange kinetics of [Mn(II)(edta)(H2O)](2-) (CN 7, hexacoordinated edta) was reinvestigated and complemented by variable pressure NMR data. The results revealed a rapid water exchange reaction for the [Mn(II)(edta)(H2O)](2-) complex with a rate constant of k(ex) = (4.1 +/- 0.4) x 10(8) s(-1) at 298.2 K and ambient pressure. The activation parameters DeltaH(double dagger), DeltaS(double dagger), and DeltaV(double dagger) are 36.6 +/- 0.8 kJ mol(-1), +43 +/- 3 J K(-1) mol(-1), and +3.4 +/- 0.2 cm(3) mol(-1), which are in line with a dissociatively activated interchange (I(d)) mechanism. To analyze the structural influence of the chelate, the investigation was complemented by studies on complexes of the edta-related tmdta (trimethylenediaminetetraacetate) chelate. The kinetic parameters for [Fe(II)(tmdta)(H2O)](2-) are k(ex) = (5.5 +/- 0.5) x 10(6) s(-1) at 298.2 K, DeltaH(double dagger) = 43 +/- 3 kJ mol(-1), DeltaS(double dagger) = +30 +/- 13 J K(-1) mol(-1), and DeltaV(double dagger) = +15.7 +/- 1.5 cm(3) mol(-1), and those for [Mn(II)(tmdta)(H2O)](2-) are k(ex) = (1.3 +/- 0.1) x 10(8) s(-1) at 298.2 K, DeltaH(double dagger) = 37.2 +/- 0.8 kJ mol(-1), DeltaS(double dagger) = +35 +/- 3 J K(-1) mol(-1), and DeltaV(double dagger) = +8.7 +/- 0.6 cm(3) mol(-1). The water containing species, [Fe(III)(tmdta)(H2O)](-) with a fraction of 0.2, is in equilibrium with the water-free hexa-coordinate form, [Fe(III)(tmdta)](-). The kinetic parameters for [Fe(III)(tmdta)(H2O)](-) are k(ex) = (1.9 +/- 0.8) x 10(7) s(-1) at 298.2 K, DeltaH(double dagger) = 42 +/- 3 kJ mol(-1), DeltaS(double dagger) = +36 +/- 10 J K(-1) mol(-1), and DeltaV(double dagger) = +7.2 +/- 2.7 cm(3) mol(-1). The data for the mentioned tmdta complexes indicate a dissociatively activated exchange mechanism in all cases with a clear relationship between the sterical hindrance that arises from the ligand architecture and mechanistic details of the exchange process for seven-coordinate complexes. The unexpected kinetic and mechanistic behavior of [Ni(II)(edta')(H2O)](2-) and [Ni(II)(tmdta')(H2O)](2-) is accounted for in terms of the different coordination number due to the strong preference for an octahedral coordination environment and thus a coordination equilibrium between the water-free, hexadentate [M(L)](n+) and the aqua-pentadentate forms [M(L')(H2O)](n+) of the Ni(II)-edta complex, which was studied in detail by variable temperature and pressure UV-vis experiments. For [Ni(II)(edta')(H2O)](2-) (CN 6, pentacoordinated edta) a water substitution rate constant of (2.6 +/- 0.2) x 10(5) s(-1) at 298.2 K and ambient pressure was measured, and the activation parameters DeltaH(double dagger), DeltaS(double dagger), and DeltaV(double dagger) were found to be 34 +/- 1 kJ mol(-1), -27 +/- 2 J K(-1) mol(-1), and +1.8 +/- 0.1 cm(3) mol(-1), respectively. For [Ni(II)(tmdta')(H2O)](2-), we found k = (6.4 +/- 1.4) x 10(5) s(-1) at 298.2 K, DeltaH(double dagger) = 22 +/- 4 kJ mol(-1), and DeltaS(double dagger) = -59 +/- 5 J K(-1) mol(-1). The process is referred to as a water substitution instead of a water exchange reaction, since these observations refer to the intramolecular displacement of coordinated water by the carboxylate moiety in a ring-closure reaction.  相似文献   

4.
The effect of temperature and pressure on the water exchange reaction of [Fe(II)(NTA)(H2O)2](-) and [Fe(II)(BADA)(H2O)2](-) (NTA = nitrilotriacetate; BADA = beta-alanindiacetate) was studied by 17O NMR spectroscopy. The [Fe(II)(NTA)(H2O)2](-) complex showed a water exchange rate constant, k(ex), of (3.1 +/- 0.4) x 10(6) s(-1) at 298.2 K and ambient pressure. The activation parameters DeltaH( not equal), DeltaS( not equal) and DeltaV( not equal) for the observed reaction are 43.4 +/- 2.6 kJ mol(-1), + 25 +/- 9 J K(-1) mol(-1) and + 13.2 +/- 0.6 cm(3) mol(-1), respectively. For [Fe(II)(BADA)(H2O)2](-), the water exchange reaction is faster than for the [Fe(II)(NTA)(H2O)2](-) complex with k(ex) = (7.4 +/- 0.4) x 10(6) s(-1) at 298.2 K and ambient pressure. The activation parameters DeltaH( not equal), DeltaS( not equal) and DeltaV( not equal) for the water exchange reaction are 40.3 +/- 2.5 kJ mol(-1), + 22 +/- 9 J K(-1) mol(-1) and + 13.3 +/- 0.8 cm(3) mol(-1), respectively. The effect of pressure on the exchange rate constant is large and very similar for both systems, and the numerical values for DeltaV( not equal) suggest in both cases a limiting dissociative (D) mechanism for the water exchange process.  相似文献   

5.
Ligand substitution reactions of the vitamin B12 analog cyanoimidazolylcobamide, CN(Im)Cbl, with cyanide were studied. Cyanide substitutes imidazole (Im) in the alpha-position more slowly than it substitutes dimethylbenzimidazole in cyanocobalamin (vitamin B12). The kinetics of the displacement of Im by CN- showed saturation behaviour at high cyanide concentration; the limiting rate constant was found to be 0.0264 s(-1) at 25 degrees C and is characterized by the activation parameters: DeltaH(not =) = 111 +/- 2 kJ mol(-1), DeltaS(not =) = +97 +/- 6 J K(-1) mol(-1), and DeltaV(not =) = +9.3 +/- 0.3 cm3 mol(-1). These parameters are interpreted in terms of an I(d) mechanism. The equilibrium constant for the reaction of CN(Im)Cbl with CN- was found to be 861 +/- 75 M(-1), which is significantly less than that obtained for the reaction of cyanocobalamin with CN- (viz. 10(4) M(-1)). pKbase-off for the base-on/base-off equilibrium was determined spectrophotometrically and found to be 0.99 +/- 0.05, which is about 0.9 pH units higher than that obtained previously in the case of cyanocobalamin. In addition, the kinetics of the base-on/base-off reaction was studied using a pH-jump technique and the data obtained revealed evidence for an acid catalyzed reaction path. The results obtained in this study are discussed in reference to those reported previously for cyanocobalamin.  相似文献   

6.
A detailed kinetic study of the substitution behavior of the seven-coordinate [Fe(dapsox)(L)2]ClO4 complex (H(2)dapsox = 2,6-diacetylpyridine-bis(semioxamazide), L = solvent or its deprotonated form) with thiocyanate as a function of the thiocyanate concentration, temperature, and pressure was undertaken in protic (EtOH and acidified EtOH and MeOH) and aprotic (DMSO) organic solvents. The lability and substitution mechanism depend strongly on the selected solvent (i.e., on solvolytic and protolytic processes). In the case of alcoholic solutions, substitution of both solvent molecules by thiocyanate could be observed, whereas in DMSO only one substitution step occurred. For both substitution steps, [Fe(dapsox)(L)2]ClO4 shows similar mechanistic behavior in methanol and ethanol, which is best reflected by the values of the activation volumes (MeOH DeltaV(I) = +15.0 +/- 0.3 cm(3) mol(-1), DeltaV(II) = +12.0 +/- 0.2 cm(3) mol(-1); EtOH DeltaV(I) = +15.8 +/- 0.7 cm(3) mol(-1), DeltaV(II) = +11.1 +/- 0.5 cm(3) mol(-1)). On the basis of the reported activation parameters, a dissociative (D) mechanism for the first substitution step and a D or dissociative interchange (I(d)) mechanism for the second substitution step are suggested for the reaction in MeOH and EtOH. This is consistent with the predominant existence of alcoxo [Fe(dapsox)(ROH)(OR)] species in alcoholic solutions. In comparison, the activation parameters for the substitution of the aqua-hydroxo [Fe(dapsox)(H2O)(OH)] complex by thiocyanate at pH 5.1 in MES were determined to be DeltaH = 72 +/- 3 kJ mol(-1), DeltaS = +38 +/- 11 J K(-1) mol(-1), and DeltaV = -3.0 +/- 0.1 cm(3) mol(-1), and the operation of a dissociative interchange mechanism was suggested, taking the effect of pressure on the employed buffer into account. The addition of triflic acid to the alcoholic solutions ([HOTf] = 10(-3) and 10(-2) M to MeOH and EtOH, respectively) resulted in a drastic changeover in mechanism for the first substitution step, for which an associative interchange (Ia) mechanism is suggested, on the basis of the activation parameters obtained for both the forward and reverse reactions and the corresponding volume profile. The second substitution step remained to proceed through an I(d) or D mechanism (acidified MeOH DeltaV(II) = +9.2 +/- 0.2 cm(3) mol(-1); acidified EtOH DeltaV(II) = +10.2 +/- 0.2 cm(3) mol(-1)). The first substitution reaction in DMSO was found to be slowed by several orders of magnitude and to follow an associative interchange mechanism (DeltaS = -50 +/- 9 J K(-1) mol(-1), DeltaV(I) = -1.0 +/- 0.5 cm(3) mol(-1)), making DMSO a suitable solvent for monitoring substitution processes that are extremely fast in aqueous solution.  相似文献   

7.
Solvated cobalt(II) ions in neat 1,3-propanediamine (tn) and n-propylamine (pa) have been characterized by electronic absorption spectroscopy and extended X-ray absorption fine structure (EXAFS) spectroscopy. The equilibrium between tetrahedral and octahedral geometry for cobalt(II) ion has been observed in a neat pa solution, but not in neat diamine solutions such as tn and ethylenediamine (en). The thermodynamic parameters and equilibrium constant at 298 K for the geometrical equilibrium in pa were determined to be DeltaH degrees = -36.1 +/- 2.3 kJ mol(-1), DeltaS degrees = -163 +/- 8 J mol(-1) K(-1), and K(298) = 6.0 x 10(-3) M(-2), where K = [Co(pa)(6)(2+)]/{[Co(pa)(4)(2+)][pa](2)}. The equilibrium is caused by the large entropy gain in formation of the tetrahedral cobalt(II) species. The solvent exchange of cobalt(II) ion with octahedral geometry in tn and pa solutions has been studied by the (14)N NMR line-broadening method. The activation parameters and rate constants at 298 K for the solvent exchange reactions are as follows: DeltaH() = 49.3 +/- 0.9 kJ mol(-1), DeltaS() = 25 +/- 3 J mol(-1) K(-1), DeltaV() = 6.6 +/- 0.3 cm(3) mol(-1) at 302.1 K, and k(298) = 2.9 x 10(5) s(-1) for the tn exchange, and DeltaH() = 36.2 +/- 1.2 kJ mol(-1), DeltaS() = 35 +/- 6 J mol(-1) K(-1), and k(298) = 2.0 x 10(8) s(-1) for the pa exchange. By comparison of the activation parameters with those for the en exchange of cobalt(II) ion, it has been confirmed that the kinetic chelate strain effect is attributed to the large activation enthalpy for the bidentate chelate opening and that the enthalpic effect is smaller in the case of the six-membered tn chelate compared with the five-membered en chelate.  相似文献   

8.
The ferriheme protein metmyoglobin (metMb) in buffer solution at physiological pH 7.4 reversibly binds the biomessenger molecule nitric oxide to yield the nitrosyl adduct (metMb(NO)). The kinetics of the association and dissociation processes were investigated by both laser flash photolysis and stopped-flow kinetics techniques at ambient and high pressure, in three laboratories using several different sources of metMb. The activation parameters DeltaH, DeltaS, and DeltaV were calculated from the kinetic effects of varying temperature and hydrostatic pressure. For the "on" reaction of metMb plus NO, reasonable agreement was found between the various techniques with DeltaH(on), DeltaS(on), and DeltaV(on) determined to have the respective values approximately 65 kJ mol(-1), approximately 60 J mol(-1) K(-1), and approximately 20 cm(3) mol(-1). The large and positive DeltaS and DeltaV values are consistent with the operation of a limiting dissociative ligand substitution mechanism whereby dissociation of the H(2)O occupying the sixth distal coordination site of metMb must precede formation of the Fe-NO bond. While the activation enthalpies of the "off" reaction displayed reasonable agreement between the various techniques (ranging from 68 to 83 kJ mol(-1)), poorer agreement was found for the DeltaS(off) values. For this reason, the kinetics for the "off" reaction were determined more directly via NO trapping experiments, which gave the respective activation parameters DeltaH(off) = 76 kJ mol(-1), DeltaS(off) = approximately 41 J mol(-1) K(-1), and DeltaV(off) = 20 cm(3) mol(-1)), again consistent with a limiting dissociative mechanism. These results are discussed in reference to other investigations of the reactions of NO with both model systems and metalloproteins.  相似文献   

9.
A detailed kinetic study of the protonation and subsequent reductive elimination reaction of a (diimine)platinum(II) dimethyl complex was undertaken in dichloromethane over the temperature range of -90 to +10 degrees C by stopped-flow techniques. Time-resolved UV-vis monitoring of the reaction allowed the assessment of the effects of acid concentration, coordinating solvent (MeCN) concentration, temperature, and pressure. The second-order rate constant for the protonation step was determined to be 15200 +/- 400 M(-1) s(-1) at -78 degrees C, and the corresponding activation parameters are DeltaH = 15.2 +/- 0.6 kJ mol(-1) and DeltaS = -85 +/- 3 J mol(-1) K(-1), which are in agreement with the addition of a proton that results in the formation of the platinum(IV) hydrido complex. The kinetics of the second, methane-releasing reaction step do not show an acid dependence, and the MeCN concentration also does not significantly affect the reaction rate. The activation parameters for the second reaction step were found to be DeltaH = 75 +/- 1 kJ mol(-1), DeltaS = +38 +/- 5 J mol(-1) K(-1), and DeltaV = +18 +/- 1 cm(3) mol(-1), strongly suggesting a dissociative character of the rate-determining step for the reductive elimination reaction. The spectroscopic and kinetic observations were correlated with NMR data and assisted the elucidation of the underlying reaction mechanism.  相似文献   

10.
The dicopper(I) complex [Cu2(MeL66)]2+ (where MeL66 is the hexadentate ligand 3,5-bis-{bis-[2-(1-methyl-1H-benzimidazol-2-yl)-ethyl]-amino}-meth ylbenzene) reacts reversibly with dioxygen at low temperature to form a mu-peroxo adduct. Kinetic studies of O2 binding carried out in acetone in the temperature range from -80 to -55 degrees C yielded the activation parameters DeltaH1(not equal) = 40.4 +/- 2.2 kJ mol(-1), DeltaS1)(not equal) = -41.4 +/- 10.8 J K(-1) mol(-1) and DeltaH(-1)(not equal) = 72.5 +/- 2.4 kJ mol(-1), DeltaS(-1)(not equal) = 46.7 +/- 11.1 J K(-1) mol(-1) for the forward and reverse reaction, respectively, and the binding parameters of O2 DeltaH degrees = -32.2 +/- 2.2 kJ mol(-1) and DeltaS degrees = -88.1 +/- 10.7 J K(-1) mol(-1). The hydroxylation of a series of p-substituted phenolate salts by [Cu2(MeL66)O2]2+ studied in acetone at -55 degrees C indicates that the reaction occurs with an electrophilic aromatic substitution mechanism, with a Hammett constant rho = -1.84. The temperature dependence of the phenol hydroxylation was studied between -84 and -70 degrees C for a range of sodium p-cyanophenolate concentrations. The rate plots were hyperbolic and enabled to derive the activation parameters for the monophenolase reaction DeltaH(not equal)ox = 29.1 +/- 3.0 kJ mol(-1), DeltaS(not equal)ox = -115 +/- 15 J K(-1) mol(-1), and the binding parameters of the phenolate to the mu-peroxo species DeltaH degrees(b) = -8.1 +/- 1.2 kJ mol(-1) and DeltaS degrees(b) = -8.9 +/- 6.2 J K(-1) mol(-1). Thus, the complete set of kinetic and thermodynamic parameters for the two separate steps of O2 binding and phenol hydroxylation have been obtained for [Cu2(MeL66)]2+.  相似文献   

11.
A detailed mechanistic study of the substitution behavior of a 3d metal heptacoordinate complex, with a rare pentagonal-bipyramidal structure, was undertaken to resolve the solution chemistry of this system. The kinetics of the complex-formation reaction of [Fe(dapsox)(H(2)O)(2)]ClO(4) (H(2)dapsox = 2,6-diacetylpyridine-bis(semioxamazide)) with thiocyanate was studied as a function of thiocyanate concentration, pH, temperature, and pressure. The reaction proceeds in two steps, which are both base-catalyzed due to the formation of an aqua-hydroxo complex (pK(a1) = 5.78 +/- 0.04 and pK(a2) = 9.45 +/- 0.06 at 25 degrees C). Thiocyanate ions displace the first coordinated water molecule in a fast step, followed by a slower reaction in which the second thiocyanate ion coordinates trans to the N-bonded thiocyanate. At 25 degrees C and pH <4.5, only the first reaction step can be observed, and the kinetic parameters (pH 2.5: k(f(I)) = 2.6 +/- 0.1 M(-1) s(-1), DeltaH(#)(f(I)) = 62 +/- 3 kJ mol(-1), DeltaS(#)(f(I)) = -30 +/- 10 J K(-1) mol(-1), and DeltaV(#)(f(I)) = -2.5 +/- 0.2 cm(3) mol(-1)) suggest the operation of an I(a) mechanism. In the pH range 2.5 to 5.2 this reaction step involves the participation of both the diaqua and aqua-hydroxo complexes, for which the complex-formation rate constants were found to be 2.19 +/- 0.06 and 1172 +/- 22 M(-1) s(-1) at 25 degrees C, respectively. The more labile aqua-hydroxo complex is suggested to follow an I(d) or D substitution mechanism on the basis of the reported kinetic data. At pH > or =4.5, the second substitution step also can be monitored (pH 5.5 and 25 degrees C: k(f(II)) = 21.1 +/- 0.5 M(-1) s(-1), DeltaH(#)(f(II)) = 60 +/- 2 kJ mol(-1), DeltaS(#)(f(II)) = -19 +/- 6 J K(-1) mol(-1), and DeltaV(#)(f(II)) = +8.8 +/- 0.3 cm(3) mol(-1)), for which an I(d) or D mechanism is suggested. The results are discussed in terms of known structural parameters and in comparison to relevant structural and kinetic data from the literature.  相似文献   

12.
Guest exchange in an M(4)L(6) supramolecular assembly was previously demonstrated to proceed through a nonrupture mechanism in which guests squeeze through apertures in the host structure and not through larger portals created by partial assembly dissociation. Focusing on the [Ga(4)L(6)](12-) assembly [L = 1,5-bis(2',3'-dihydroxybenzamido)naphthalene], the host-guest kinetic behavior of this supramolecular capsule is defined. Guest self-exchange rates at varied temperatures and pressures were measured to determine activation parameters, revealing negative DeltaS and positive DeltaV values [PEt(4)(+): DeltaH = 74(3) kJ mol(-1), DeltaS = -46(6) J mol(-1) K(-1), k(298) = 0.003 s(-)); NEt(4)(+): DeltaH = 69(2) kJ mol(-1), DeltaS = -52(5) J mol(-1) K(-1), k(298) = 0.009 s(-1); NMe(2)Pr(2)(+): DeltaH = 52(2) kJ mol(-1), DeltaS = -56(7) J mol(-1) K(-1), DeltaV = +13(1) cm(3) mol(-1), k(298) = 4.4 s(-1); NPr(4)(+): DeltaH = 42(1) kJ mol(-1), DeltaS = -102(4) J mol(-1) K(-1), DeltaV = +31(2) cm(3) mol(-1), k(298) = 1.4 s(-1)]. In PEt(4)(+) for NEt(4)(+) exchange reactions, egress of the initial guest (G1) is found to be rate determining, with increasing G1 and G2 (the displacing guest) concentrations inhibiting guest exchange. This inhibition is explained by the decreased flexibility of the host imparted by exterior, or exohedral, guest interactions by both the G1 and G2 guests. Blocking the exohedral host sites with high concentrations of the smaller NMe(4)(+) cation (a weak endohedral guest) enhances PEt(4)(+) for NEt(4)(+) guest exchange rates. Finally, guest displacement reactions also demonstrate the sensitivity of guest exchange to thermodynamic endohedral guest binding affinities. When the initial guest (G1) has a weaker affinity for the host, G2 concentration dependence is observed in addition to dependence on the G2 binding strength.  相似文献   

13.
Conventional and stopped-flow spectrophotometry was used to to study the kinetics of ligand substitution in a number of bis(N-alkylsalicylaldiminato)oxovanadium(IV) complexes (=VO(R-X-sal)(2)) by 1,1,1- trifluoropentane-2,4-dione (=Htfpd) in acetone, according to the following reaction: VO(R-X-sal)(2) + 2Htfpd --> VO(tfpd)(2) + 2R-X-salH. The acronym R-X-salH refers to N-alkylsalicylaldimines with substituents X = H, Cl, Br, CH(3), and NO(2) in the 5-position of the salicylaldehyde ring and N-alkyl groups R = n-propyl, isopropyl, phenyl, and neopentyl. Under excess conditions ([Htfpd](0) > [VO(R-X-sal)(2)](0)), substitution by Htfpd occurs in two observable steps, as characterized by pseudo-first-order rate constants k(obsd(1)) and k(obsd(2)). Both rate constants increase linearly with [Htfpd](0) according to k(obsd(1)) = k(s(1)) + k(1)[Htfpd](0) and k(obsd(2)) = k(s(2)) + k(2)[Htfpd](0), with k(s(1)) and k(s(2)) describing small contributions of solvent-initiated pathways. Depending on the nature of R and X, second-order rate constants k(1) and k(2) lie in the range 0.098-0.87 M(-1) s(-1) (k(1)) and 0.022-0.41 M(-1) s(-1) (k(2)) at 298 K. For ligand substitution in the system VO(n-propyl-sal)(2)/Htfpd, the activation parameters DeltaH++ = 35.8 +/- 2.8 kJ mol(-1) and DeltaS++ = -146 +/- 23 J K(-1) mol(-1) (k(1)) and DeltaH++ = 40.2 +/- 1.3 kJ mol(-1) and DeltaS++ = -142 +/- 11 J K(-1) mol(-1) (k(2)) were obtained. The Lewis acidity of the complexes VO(n-propyl-X-sal)(2) with X = H, Cl, Br, CH(3), and NO(2) was quantified spectrophotometrically by determination of equilibrium constant K(py), describing the formation of the adduct VO(n-propyl-X-sal)(2).pyridine. The adduct VO(tfpd)(2).n-propyl-salH, formed as product in the system VO(n-propyl-sal)(2)/Htfpd, was characterized by its dissociation constant, K(D) = (3.30 +/- 0.10) x 10(-3) M. The mechanism suggested for the two-step substitution process is based on initial formation of the adducts VO(R-X-sal)(2).Htfpd (step 1) and VO(R-X-sal)(tfpd).Htfpd (step 2).  相似文献   

14.
Kinetic studies of cyanide exchange on [M(CN)(4)](2-) square-planar complexes (M = Pt, Pd, and Ni) were performed as a function of pH by (13)C NMR. The [Pt(CN)(4)](2-) complex has a purely second-order rate law, with CN(-) as acting as the nucleophile, with the following kinetic parameters: (k(2)(Pt,CN))(298) = 11 +/- 1 s(-1) mol(-1) kg, DeltaH(2) (Pt,CN) = 25.1 +/- 1 kJ mol(-1), DeltaS(2) (Pt,CN) = -142 +/- 4 J mol(-1) K(-1), and DeltaV(2) (Pt,CN) = -27 +/- 2 cm(3) mol(-1). The Pd(II) metal center has the same behavior down to pH 6. The kinetic parameters are as follows: (k(2)(Pd,CN))(298) = 82 +/- 2 s(-1) mol(-1) kg, DeltaH(2) (Pd,CN) = 23.5 +/- 1 kJ mol(-1), DeltaS(2) (Pd,CN) = -129 +/- 5 J mol(-1) K(-1), and DeltaV(2) (Pd,CN) = -22 +/- 2 cm(3) mol(-1). At low pH, the tetracyanopalladate is protonated (pK(a)(Pd(4,H)) = 3.0 +/- 0.3) to form [Pd(CN)(3)HCN](-). The rate law of the cyanide exchange on the protonated complex is also purely second order, with (k(2)(PdH,CN))(298) = (4.5 +/- 1.3) x 10(3) s(-1) mol(-1) kg. [Ni(CN)(4)](2-) is involved in various equilibrium reactions, such as the formation of [Ni(CN)(5)](3-), [Ni(CN)(3)HCN](-), and [Ni(CN)(2)(HCN)(2)] complexes. Our (13)C NMR measurements have allowed us to determine that the rate constant leading to the formation of [Ni(CN)(5)](3-) is k(2)(Ni(4),CN) = (2.3 +/- 0.1) x 10(6) s(-1) mol(-1) kg when the following activation parameters are used: DeltaH(2)() (Ni,CN) = 21.6 +/- 1 kJ mol(-1), DeltaS(2) (Ni,CN) = -51 +/- 7 J mol(-1) K(-1), and DeltaV(2) (Ni,CN) = -19 +/- 2 cm(3) mol(-1). The rate constant of the back reaction is k(-2)(Ni(4),CN) = 14 x 10(6) s(-1). The rate law pertaining to [Ni(CN)(2)(HCN)(2)] was found to be second order at pH 3.8, and the value of the rate constant is (k(2)(Ni(4,2H),CN))(298) = (63 +/- 15) x10(6) s(-1) mol(-1) kg when DeltaH(2) (Ni(4,2H),CN) = 47.3 +/- 1 kJ mol(-1), DeltaS(2) (Ni(4,2H),CN) = 63 +/- 3 J mol(-1) K(-1), and DeltaV(2) (Ni(4,2H),CN) = - 6 +/- 1 cm(3) mol(-1). The cyanide-exchange rate constant on [M(CN)(4)](2-) for Pt, Pd, and Ni increases in a 1:7:200 000 ratio. This trend is modified at low pH, and the palladium becomes 400 times more reactive than the platinum because of the formation of [Pd(CN)(3)HCN](-). For all cyanide exchanges on tetracyano complexes (A mechanism) and on their protonated forms (I/I(a) mechanisms), we have always observed a pure second-order rate law: first order for the complex and first order for CN(-). The nucleophilic attack by HCN or solvation by H(2)O is at least nine or six orders of magnitude slower, respectively than is nucleophilic attack by CN(-) for Pt(II), Pd(II), and Ni(II), respectively.  相似文献   

15.
The kinetics and mechanism of the reaction between nitric oxide and aquapentacyanoferrate(III) were studied in detail. Pentacyanonitrosylferrate (nitroprusside, NP) was produced quantitatively in a pseudo-first-order process. The complex-formation rate constant was found to be 0.252 +/- 0.004 M(-1) s(-1) at 25.5 degrees C, pH 3.0 (HClO(4)), and I = 0.1 M (NaClO(4)), for which the activation parameters are DeltaH++ = 52 +/- 1 kJ mol(-1), DeltaS++ = -82 +/- 4 J K(-1) mol(-1), and DeltaV++ = -13.9 + 0.5 cm(3) mol(-1). These data disagree with earlier studies on complex-formation reactions of aquapentacyanoferrate(III), for which a dissociative interchange (I(d)) mechanism was suggested. The aquapentacyanoferrate(II) ion was detected as a reactive intermediate in the reaction of aquapentacyanoferrate(III) with NO, by using pyrazine and thiocyanate as scavengers for this intermediate. In addition, the reactions of other [Fe(III)(CN)(5)L](n-) complexes (L = NCS(-), py, NO(2)(-), and CN(-)) with NO were studied. These experiments also pointed to the formation of Fe(II) species as intermediates. It is proposed that aquapentacyanoferrate(III) is reduced by NO to the corresponding Fe(II) complex through a rate-determining outer-sphere electron-transfer reaction controlling the overall processes. The Fe(II) complex rapidly reacts with nitrite producing [Fe(II)(CN)(5)NO(2)](4)(-), followed by the fast and irreversible conversion to NP.  相似文献   

16.
Solvent exchange on trans-[Os(en)(2)(eta(2)-H(2))S](2+) (S = H(2)O, CH(3)CN) has been studied in neat solvent as a function of temperature and pressure by (17)O NMR line-broadening and isotopic labeling experiments (S = H(2)O) and by (1)H NMR isotopic labeling experiments (S = CH(3)CN). Rate constants and activation parameters are as follows for S = H(2)O and CH(3)CN, respectively: k(ex)(298) = 1.59 +/- 0.04 and (2.74 +/- 0.03) x 10(-)(4) s(-)(1); DeltaH() = 72.4 +/- 0.5 and 98.0 +/- 1.4 kJ mol(-)(1); DeltaS() = +1.7 +/- 1.8 and +15.6 +/- 4.9 J mol(-)(1) K(-)(1); DeltaV() = -1.5 +/- 1.0 and -0.5 +/- 1.0 cm(3) mol(-)(1). The present investigation of solvent exchange when compared with a previous study on substitution reactions on the same complexes leads to the conclusion that substitution reactions on these compounds undergo an interchange dissociative, I(d), or dissociative, D, reaction mechanism, where solvent dissociation is the rate-limiting step.  相似文献   

17.
()()Conventional (18)O isotopic labeling techniques have been used to measure the water exchange rates on the Rh(III) hydrolytic dimer [(H(2)O)(4)Rh(&mgr;-OH)(2)Rh(H(2)O)(4)](4+) at I = 1.0 M for 0.08 < [H(+)] < 0.8 M and temperatures between 308.1 and 323.1 K. Two distinct pathways of water exchange into the bulk solvent were observed (k(fast) and k(slow)) which are proposed to correspond to exchange of coordinated water at positions cis and trans to bridging hydroxide groups. This proposal is supported by (17)O NMR measurements which clearly showed that the two types of water ligands exchange at different rates and that the rates of exchange matched those from the (18)O labeling data. No evidence was found for the exchange of label in the bridging OH groups in either experiment. This contrasts with findings for the Cr(III) dimer. The dependence of both k(fast) and k(slow) on [H(+)] satisfied the expression k(obs) = (k(O)[H(+)](tot) +k(OH)K(a1))/([H(+)](tot) + K(a1)) which allows for the involvement of fully protonated and monodeprotonated Rh(III) dimer. The following rates and activation parameters were determined at 298 K. (i) For fully protonated dimer: k(fast) = 1.26 x 10(-)(6) s(-)(1) (DeltaH() = 119 +/- 4 kJ mol(-)(1) and DeltaS() = 41 +/- 12 J K(-)(1) mol(-)(1)) and k(slow) = 4.86 x 10(-)(7) s(-)(1) (DeltaH() = 64 +/- 9 kJ mol(-)(1) and DeltaS() = -150 +/- 30 J K(-)(1) mol(-)(1)). (ii) For monodeprotonated dimer: k(fast) = 3.44 x 10(-)(6) s(-)(1) (DeltaH() = 146 +/- 4 kJ mol(-)(1) and DeltaS() = 140 +/- 11 J K(-)(1) mol(-)(1)) and k(slow) = 2.68 x 10(-)(6) s(-)(1) (DeltaH() = 102 +/- 3 kJ mol(-)(1) and DeltaS() = -9 +/- 11 J K(-)(1) mol(-)(1)). Deprotonation of the Rh(III) dimer was found to labilize the primary coordination sphere of the metal ions and thus increase the rate of water exchange at positions cis and trans to bridging hydroxides but not to the same extent as for the Cr(III) dimer. Activation parameters and mechanisms for ligand substitution processes on the Rh(III) dimer are discussed and compared to those for other trivalent metal ions and in particular the Cr(III) dimer.  相似文献   

18.
The interaction of NO with [Fe(CN)(5)H(2)O](3)(-) (generated by aquation of the corresponding ammine complex) to produce [Fe(CN)(5)NO](3)(-) was studied by UV-vis spectrophotometry. The reaction product is the well characterized nitrosyl complex, described as a low-spin Fe(II) bound to the NO radical. The experiments were performed in the pH range 4-10, at different concentrations of NO, temperatures and pressures. The rate law was first-order in each of the reactants, with the specific complex-formation rate constant, k(f)( )()= 250 +/- 10 M(-)(1) s(-)(1) (25.4 degrees C, I = 0.1 M, pH 7.0), DeltaH(f)() = 70 +/- 1 kJ mol(-)(1), DeltaS(f)() = +34 +/- 4 J K(-)(1) mol(-)(1), and DeltaV(f)() = +17.4 +/- 0.3 cm(3) mol(-)(1). These values support a dissociative mechanism, with rate-controlling dissociation of coordinated water, and subsequent fast coordination of NO. The complex-formation process depends on pH, indicating that the initial product [Fe(CN)(5)NO](3)(-) is unstable, with a faster decomposition rate at lower pH. The decomposition process is associated with release of cyanide, further reaction of NO with [Fe(CN)(4)NO](2)(-), and formation of nitroprusside and other unknown products. The decomposition can be prevented by addition of free cyanide to the solutions, enabling a study of the dissociation process of NO from [Fe(CN)(5)NO](3)(-). Cyanide also acts as a scavenger for the [Fe(CN)(5)](3)(-) intermediate, giving [Fe(CN)(6)](4)(-) as a final product. From the first-order behavior, the dissociation rate constant was obtained as k(d) = (1.58 +/- 0.06) x 10(-)(5) s(-)(1) at 25.0 degrees C, I = 0.1 M, and pH 10.2. Activation parameters were found to be DeltaH(d)() = 106.4 +/- 0.8 kJ mol(-)(1), DeltaS(d)() = +20 +/- 2 J K(-)(1) mol(-)(1), and DeltaV(d)() = +7.1 +/- 0.2 cm(3) mol(-)(1), which are all in line with a dissociative mechanism. The low value of k(d) as compared to values for the release of other ligands L from [Fe(II)(CN)(5)L](n)()(-) suggests a moderate to strong sigma-pi interaction of NO with the iron(II) center. It is concluded that the release of NO from nitroprusside in biological media does not originate from [Fe(CN)(5)NO](3)(-) produced on reduction of nitroprusside but probably proceeds through the release of cyanide and further reactions of the [Fe(CN)(4)NO](2)(-) ion.  相似文献   

19.
Kinetic studies show that the reaction of [TpIr(CO)2] (1, Tp = hydrotris(pyrazolyl)borate) with water to give [TpIr(CO2H)(CO)H] (2) is second order (k = 1.65 x 10(-4) dm(3) mol(-1) s(-1), 25 degrees C, MeCN) with activation parameters DeltaH++= 46+/-2 kJ mol(-1) and DeltaS++ = -162+/-5 J K(-1) mol(-1). A kinetic isotope effect of k(H2O)/k(D2O) = 1.40 at 20 degrees C indicates that O-H/D bond cleavage is involved in the rate-determining step. Despite being more electron rich than 1, [Tp*Ir(CO)2] (1*, Tp* = hydrotris(3,5-dimethylpyrazolyl)borate) reacts rapidly with adventitious water to give [Tp*Ir(CO2H)(CO)H] (2*). A proposed mechanism consistent with the relative reactivity of 1 and 1* involves initial protonation of Ir(I) followed by nucleophilic attack on a carbonyl ligand. An X-ray crystal structure of 2* shows dimer formation via pairwise H-bonding interactions of hydroxycarbonyl ligands (r(O...O) 2.65 A). Complex 2* is thermally stable but (like 2) is amphoteric, undergoing dehydroxylation with acid to give [Tp*Ir(CO)2H]+ (3*) and decarboxylation with OH- to give [TpIr(CO)H2] (4*). Complex 2 undergoes thermal decarboxylation above ca. 50 degrees C to give [TpIr(CO)H2] (4) in a first-order process with activation parameters DeltaH++ = 115+/-4 kJ mol(-1) and DeltaS++ = 60+/-10 J K(-1) mol(-1).  相似文献   

20.
Two novel ligands containing pyridine units and phosphonate pendant arms, with ethane-1,2-diamine (L2) or cyclohexane-1,2-diamine (L3) backbones, have been synthesized for Ln complexation. The hydration numbers obtained from luminescence lifetime measurements in aqueous solutions of the Eu(III) and Tb(III) complexes are q = 0.6 (EuL2), 0.7 (TbL2), 0.8 (EuL3), and 0.4 (TbL3). To further assess the hydration equilibrium, we have performed a variable-temperature and -pressure UV-vis spectrophotometric study on the Eu(III) complexes. The reaction enthalpy, entropy, and volume for the hydration equilibrium EuL <--> EuL(H2O) were calculated to be DeltaH degrees = -(11.6 +/- 2) kJ mol(-1), DeltaS degrees = -(34.2 +/- 5) J mol(-1) K(-1), and = 1.8 +/- 0.3 for EuL2 and DeltaH degrees = -(13.5 +/- 1) kJ mol(-1), DeltaS degrees = -(41 +/- 4) J mol(-1) K(-1), and = 1.7 +/- 0.3 for EuL3, respectively. We have carried out variable-temperature 17O NMR and nuclear magnetic relaxation dispersion (NMRD) measurements on the GdL2(H2O)q and GdL3(H2O)q systems. Given the presence of phosphonate groups in the ligand backbone, a second-sphere relaxation mechanism has been included for the analysis of the longitudinal (17)O and (1)H NMR relaxation rates. The water exchange rate on GdL2(H2O)q, = (7.0 +/- 0.8) x 10(8) s(-1), is extremely high and comparable to that on the Gd(III) aqua ion, while it is slightly reduced for GdL3(H2O)q, = (1.5 +/- 0.1) x 10(8) s(-1). This fast exchange can be rationalized in terms of a very flexible inner coordination sphere, which is slightly rigidified for L3 by the introduction of the cyclohexyl group on the amine backbone. The water exchange proceeds via a dissociative interchange mechanism, evidenced by the positive activation volumes obtained from variable-pressure 17O NMR for both GdL2(H2O)q and GdL3(H2O)q (DeltaV = +8.3 +/- 1.0 and 8.7 +/- 1.0 cm(3) mol(-1), respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号