首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new polynucleating ligand, 1,2,4,5-tetrakis(1,4,7-triazacyclonon-1-ylmethyl)benzene (Ldur), has been prepared and characterized as its dodecahydrobromide salt. Addition of base to an aqueous solution of this salt and 4 molar equivalents (m.e.) of a Ni(II) salt produces a mixture of bi- and trinuclear complexes, which can be separated by cation-exchange chromatography (CEC) and crystallized as [Ni2Ldur](ClO4)(4).2H2O (1) and [Ni3Ldur(H2O)6](ClO4)(6).9H2O (2). The "full capacity" tetranuclear complex, [Ni4Ldur(H2O)12](ClO4)(8).8H2O (3), is obtained by slow addition of Ldur to a refluxing aqueous solution of excess Ni2+ ions, followed by CEC purification. Treatment of Ldur with 4 m.e. of a copper(II) salt produces exclusively the tetranuclear complex, [Cu4Ldur(H2O)8](ClO4)(8).9H2O (4), while reaction with only 2 m.e. of Cu2+ ions yields the binuclear complex, [Cu2Ldur](ClO4)(4).4H2O (5). The X-ray structures of complexes 1,2,4, and [Cu2Ldur](ClO4)(4).3H2O (5') have been determined; all are monoclinic, P2(1)/c: for 1, a = 9.497(3) A, b = 13.665(5) A, c = 19.355(6) A, beta = 100.57(2) degrees, V = 2469(1) A3, and Z = 2; for 2, a = 22.883(7) A, b = 15.131(6) A, c = 20.298(8) A, beta = 97.20(3) degrees, V = 6973(4) A3, and Z = 4; for 4, a = 16.713(7) A, b = 16.714(6) A, c = 14.775(11) A, beta = 108.24(5) degrees, V = 3920(4) A3, and Z = 2; and for 5', a = 9.5705(1) A, b = 13.0646(1) A, c = 20.1298(2) A, beta = 103.1618(8) degrees, V = 2450.81(4) A3, and Z = 2. The metal centers in 1 and 5' lie in distorted octahedral environments, each facially coordinated by two of the triamine rings of Ldur, the cation in each case being centrosymmetric. In 2, one of the nickel(II) centers is similarly sandwiched by two triamine rings, while the other two nickel(II) centers are each coordinated by a single triamine ring from the ligand, with their distorted octahedral coordination spheres each being completed by three water molecules. In 4, the four triamine rings of Ldur bind to separate copper(II) centers, with two water molecules occupying the remaining two sites of the distorted square pyramidal (SP) coordination spheres, the cation again being centrosymmetric.  相似文献   

2.
Copper(I) and copper(II) complexes possessing a series of related ligands with pyridyl-containing donors have been investigated. The ligands are tris(2-pyridylmethyl)amine (tmpa), bis[(2-pyridyl)methyl]-2-(2-pyridyl)ethylamine (pmea), bis[2-(2-pyridyl)ethyl]-(2-pyridyl)methylamine (pmap), and tris[2-(2-pyridyl)ethyl]amine (tepa). The crystal structures of the protonated ligand H(tepa)ClO(4), the copper(I) complexes [Cu(pmea)]PF(6) (1b-PF(6)), [Cu(pmap)]PF(6) (1c-PF(6)), and copper(II) complexes [Cu(pmea)Cl]ClO(4).H(2)O (2b-ClO(4).H(2)O), [Cu(pmap)Cl]ClO(4).H(2)O (2c-ClO(4).H(2)O), [Cu(pmap)Cl]ClO(4) (2c-ClO(4)), and [Cu(pmea)F](2)(PF(6))(2) (3b-PF(6)) were determined. Crystal data: H(tepa)ClO(4), formula C(21)H(25)ClN(4)O(4), triclinic space group P1, Z = 2, a = 10.386(2) A, b = 10.723(2) A, c = 11.663(2) A, alpha = 108.77(3) degrees, beta = 113.81(3) degrees, gamma = 90.39(3) degrees; 1b-PF(6), formula C(19)H(20)CuF(6)N(4)P, orthorhombic space group Pbca, Z = 8, a = 14.413(3) A, b = 16.043(3) A, c = 18.288(4) A, alpha = beta = gamma = 90 degrees; (1c-PF(6)), formula C(20)H(22)CuF(6)N(4)P, orthorhombic space group Pbca, Z = 8, a = 13.306(3) A, b = 16.936(3) A, c = 19.163(4) A, alpha = beta = gamma = 90 degrees; 2b-ClO(4).H(2)O, formula C(19)H(22)Cl(2)CuN(4)O(5), triclinic space group P1, Z = 4, a = 11.967(2) A, b = 12.445(3) A, c = 15.668(3) A, alpha = 84.65(3) degrees, beta = 68.57(3) degrees, gamma = 87.33(3) degrees; 2c-ClO(4).H(2)O, formula C(20)H(24)Cl(2)CuN(4)O(5), monoclinic space group P2(1)/c, Z = 4, a = 11.2927(5) A, b = 13.2389(4) A, c = 15.0939(8) A, alpha = gamma = 90 degrees, beta = 97.397(2) degrees; 2c-ClO(4), formula C(20)H(22)Cl(2)CuN(4)O(4), monoclinic space group P2(1)/c, Z = 4, a = 8.7682(4) A, b = 18.4968(10) A, c = 13.2575(8) A, alpha = gamma = 90 degrees, beta = 94.219(4) degrees; 3b-PF(6), formula [C(19)H(20)CuF(7)N(4)P](2), monoclinic space group P2(1)/n, Z = 2, a = 11.620(5) A, b = 12.752(5) A, c = 15.424(6) A, alpha = gamma = 90 degrees, beta = 109.56(3) degrees. The oxidation of the copper(I) complexes with dioxygen was studied. [Cu(tmpa)(CH(3)CN)](+) (1a) reacts with dioxygen to form a dinuclear peroxo complex that is stable at low temperatures. In contrast, only a very labile peroxo complex was observed spectroscopically when 1b was reacted with dioxygen at low temperatures using stopped-flow kinetic techniques. No dioxygen adduct was detected spectroscopically during the oxidation of 1c, and 1d was found to be unreactive toward dioxygen. Reaction of dioxygen with 1a-PF(6), 1b-PF(6), and 1c-PF(6) at ambient temperatures leads to fluoride-bridged dinuclear copper(II) complexes as products. All copper(II) complexes were characterized by UV-vis, EPR, and electrochemical measurements. The results manifest the dramatic effects of ligand variations and particularly chelate ring size on structure and reactivity.  相似文献   

3.
Substitution of the weakly binding aqua ligand in [Cu(tren)OH2](2+) and [Cu(tpa)OH2](2+) (tren = tris(2-aminoethyl)amine; tpa = tris(2-pyridylmethyl)amine) by a cyano ligand on ferricyanide results in the assembly of heteropolynuclear cations around the cyanometalate core. In water, the reduction of the Fe(III) core to Fe(II) generates complexes that feature heteropolycations in which ferrocyanide is encapsulated by the Cu(II) moieties: [(Cu(tpa)CN)6Fe][ClO4]8-3H2O 1, [(Cu(tren)CN)6Fe][ClO4]8-10H2O 2, [(Cu(tren)CN)6Fe][Fe(CN)6]2[ClO4]2-15.8H2O 3, and [(Cu(tren)CN)6Fe][(Cu(tren)CN)4Fe(CN)2][Fe(CN)6)]4-6DMSO-21H2O 4. The formation of discrete molecules, in preference to extended networks or polymeric structures, has been encouraged through the use of branched tetradentate ligands in conjunction with copper(II), a metal center with the propensity to form five-coordinate complexes. Complex 3 crystallizes in the monoclinic space group P2(1)/c (#14) with a = 14.8674(10), b = 25.9587(10), c = 27.5617(10) A, beta = 100.8300(10) degrees, and Z = 4, and it is comprised of almost spherical heptanuclear cations, [(Cu(tren)CN)6Fe](8+), whose charge is balanced by two ferricyanide and two perchlorate counteranions. Complex 4 crystallizes in the triclinic space group P1 (# 1) with a = 14.8094(8), b = 17.3901(7), c = 21.1565(11) A, alpha = 110.750(3), beta = 90.206(2), gamma = 112.754(3) degrees, and Z = 1, and it is comprised of the heptanuclear [(Cu(tren)CN)6Fe](8+) cation and pentanuclear [(Cu(tren)CN)4Fe(CN)2](4+) cation, whose terminal cyano ligands are oriented trans to each other. The charge is balanced exclusively by ferricyanide counteranions. In both complexes, H-bonding interactions between hydrogens on primary amines of the tren ligand, terminal cyano groups of the ferricyanide counterions, and the solvent of crystallization generate intricate 3D H-bonding networks.  相似文献   

4.
The nine-membered [-Cu(II)-N-N-](3) ring of trimeric copper-pyrazolato complexes provides a sturdy framework on which water is twice deprotonated in consecutive steps, forming mu(3)-OH and mu(3)-O species. In the presence of excess chlorides the mu(3)-O(H) ligand is replaced by two mu(3)-Cl ions. The interconversion of mu(3)-OH and mu(3)-O and the exchange of mu(3)-O(H) and mu(3)-Cl are reversible, and the three species involved have been structurally characterized: [PPN][Cu(3)(mu(3)-OH)(mu-pz)(3)Cl(3)(thf)].CH(2)Cl(2) (1a), monoclinic P2(1)/n, a = 10.055(2) A, b = 35.428(5) A, c = 15.153(2) A, beta = 93.802(3) degrees, V = 5386(1) A(3), Z = 4; [Bu(4)N][Cu(3)(mu(3)-OH)(mu-pz)(3)Cl(3)] (1b), triclinic P-1, a = 9.135(2) A, b = 13.631(2) A, c = 14.510(2) A, alpha = 67.393(2) degrees, beta = 87.979(2) degrees, gamma = 80.268(3) degrees, V = 1643.2(4) A(3), Z = 2; [PPN](2)[Cu(3)(mu(3)-O)(mu-pz)(3)Cl(3)] (2), monoclinic P2/c, a = 12.807(2) A, b = 13.093(2) A, c = 23.139(4) A, beta = 105.391(3) degrees, V = 3741(1) A(3), Z = 2; [PPN](2)[Cu(3)(mu(3)-Cl)(2)(mu-pz)(3)Cl(3)].0.75H(2)O.0.5CH(2)Cl(2) (3a), triclinic P-1, a = 14.042(2) A, b = 23.978(4) A, c = 25.195(4) A, alpha = 76.796(3) degrees, beta = 79.506(3) degrees, gamma = 77.629(3) degrees, V = 7988(2) A(3), Z = 4; [Bu(4)N](2)[Cu(3)(mu(3)-Cl)(2)(mu-pz)(3)Cl(3)] (3b), monoclinic C2/c, a = 17.220(2) A, b = 15.606(2) A, c = 20.133(2) A, beta = 103.057(2) degrees, V = 5270(1) A(3), Z = 4; [Et(3)NH][Cu(3)(mu(3)-OH)(mu-pz)(3)Cl(3)(pzH)] (4), triclinic P-1, a = 11.498(2) A, b = 11.499(2) A, c = 12.186(2) A, alpha = 66.475(3) degrees, beta = 64.279(3) degrees, gamma = 80.183(3) degrees, V = 1331.0(5) A(3), Z = 2. Magnetic susceptibility measurements show that the three copper centers of 2 are strongly antiferromagnetically coupled with J(Cu-Cu) = -500 cm(-1).  相似文献   

5.
The syntheses, structural characterization, and magnetic behavior of the three new polynuclear copper(II) complexes with formulas [Cu(4)(eta(2):mu-CH(3)COO)(2)(mu-OH)(2)(mu-OH(2))(mu-bdmap)(2)](ClO(4))(2).H(2)O (1), [Cu(8)(NCO)(2)(eta(1):mu-NCO)(4)(mu-OH)(2)(mu(3)-OH)(2)(mu-OH(2))(3)(mu-bdmap)(4)](ClO(4))(2)x2H(2)O (2), and [Cu(9)(eta(1):mu-NCO)(8)(mu(3)-OH)(4)(OH(2))(2)(mu-bdmap)(4)](ClO(4))(2).4H(2)O (3), in which bdmapH is 1,3-bis(dimethylamino)-2-propanol, are reported. Tetranuclear complex 1 crystallizes in the triclinic system, space group P, with unit cell parameters a = 12.160(1) A, b = 13.051(1) A, c = 13.235(1) A, alpha = 110.745(1) degrees , beta = 109.683(1) degrees , gamma = 97.014(1), and Z = 2. Octanuclear complex 2 crystallizes in the monoclinic system, space group C2/c, with unit cell parameters a = 26.609(1) A, b = 14.496(1) A, c = 16.652(1) A, beta = 97.814(1) degrees , and Z = 4, and nonanuclear complex 3 crystallizes in the monoclinic system, space group C2/c, with unit cell parameters a = 24.104(1) A, b = 13.542(1) A, c = 24.355(1) A, beta = 109.98(1) degrees , and Z = 4. The magnetic behavior of the three complexes has been checked showing strong antiferromagnetic coupling in all the cases.  相似文献   

6.
Mono- and dicopper(II) complexes of a series of potentially bridging hexaamine ligands have been prepared and characterized in the solid state by X-ray crystallography. The crystal structures of the following Cu(II) complexes are reported: [Cu(HL3)](ClO4)(3), C11H31Cl3CuN6O12, monoclinic, P2(1)/n, a = 8.294(2) A, b = 18.364(3) A, c = 15.674(3) A, beta = 94.73(2) degrees, Z = 4; ([Cu2(L4)(CO3)](2))(ClO4)(4).4H2O, C40H100Cl4Cu4N12O26, triclinic, P1, a = 9.4888(8) A, b = 13.353(1) A, c = 15.329(1) A, alpha = 111.250(7) degrees, beta = 90.068(8) degrees, gamma = 105.081(8) degrees, Z = 1; [Cu2(L5)(OH2)(2)](ClO4)(4), C13H36Cl4Cu2N6O18, monoclinic, P2(1)/c, a = 7.225(2) A, b = 8.5555(5) A, c = 23.134(8) A, beta = 92.37(1) degrees, Z = 2; [Cu2(L6)(OH2)(2)](ClO4)(4).3H2O, C14H44Cl4Cu2N6O21, monoclinic, P2(1)/a, a = 15.204(5) A, b = 7.6810(7) A, c = 29.370(1) A, beta = 100.42(2) degrees, Z = 4. Solution spectroscopic properties of the bimetallic complexes indicate that significant conformational changes occur upon dissolution, and this has been probed with EPR spectroscopy and molecular mechanics calculations.  相似文献   

7.
The synthesis and structural and magnetic properties of heteropolynuclear complexes [(L(3)Cu)(3)Cr](CH(3)CN)(3)(ClO(4))(3) (2) and [(L(3)Cu)(4)Gd.H(2)O](CH(3)OH)(H(2)O)(ClO(4))(3) (3) (H(2)L(3) ligand is 2,3-dioxo-5,6:14,15-dibenzo-1,4,8,12-tetraazacyclo-pentadeca-7,12-diene) and their precursor L(3)Cu (1) are presented. Complex 2 crystallizes in space group P2(1)/n with cell parameters a = 20.828(6) A, b = 18.321(5) A, c = 7.578(5) A, alpha = 90 degrees, beta = 91.990(8) degrees, gamma = 90 degrees, and Z = 4. The Cr(III) center is coordinated by six oxygen atoms from three Cu(II) precursors. The Cr-O bonds range over 1.948-1.982 A. The coordination environments of all the terminal Cu(II) ions change in comparison with their Cu(II) precursor. The ferromagnetic coupling (J = 16.48(1) cm(-)(1)) observed for 2 can be rationalized by symmetry considerations. For any pair of interacting magnetic orbitals, strict orthogonality is obeyed and the interaction is ferromagnetic. Complex 3 crystallizes in space group P1 with cell parameters a = 14.805(4) A, b = 16.882(5) A, c = 17.877(5) A, alpha = 75.403(5) degrees, beta = 83.317(6) degrees, gamma = 70.600(5) degrees, and Z = 2. The central Gd(III) assumes an 8 + 1 coordination environment, namely eight oxygen atoms from four Cu(II) precursors and one oxygen atom from H(2)O. The fit of the experimental data gives J = 0.27(2) cm(-)(1), g(Gd) = 1.98(1), and g(Cu) = 2.05(1). This small and positive J value shows weak ferromagnetic interaction between metal ions.  相似文献   

8.
Two new polynuclear complexes [Ni6(amox)6(mu6-O)(mu3-OH)2](Cl2).6H2O and [Cu3(amox)3(mu3-OH)(mu3-Cl)](ClO4).4H2O (amox- = anion of 4-amino-4-methyl-2-pentanone oxime) have been synthesized and characterized structurally and magnetically. The Ni(II) complex contains a novel Chinese-lantern-like Ni6 cage centered by an oxo ion. It contains the nearest octahedral Ni(II)...Ni(II) separation (<2.8 A) and exhibits strong antiferromagnetic properties. The Cu(II) complex has a cyclic trinuclear copper(II) core bridged by both mu3-OH(-) and mu3-Cl(-) ions. The magnetic susceptibilities of both antiferromagnetic complexes were fitted by using approximate models.  相似文献   

9.
The copper(I) and copper(II) complexes with the nitrogen donor ligands bis[(1-methylbenzimidazol-2-yl)methyl]amine (1-BB), bis[2-(1-methylbenzimidazol-2-yl)ethyl]amine (2-BB), N-acetyl-2-BB (AcBB), and tris[2-(1-methylbenzimidazol-2-yl)ethyl]nitromethane (TB) have been studied as models for copper nitrite reductase. The copper(II) complexes form adducts with nitrite and azide that have been isolated and characterized. The Cu(II)-(1-BB) and Cu(II)-AcBB complexes are basically four-coordinated with weak axial interaction by solvent or counterion molecules, whereas the Cu(II)-(2-BB) and Cu(II)-TB complexes prefer to assume five-coordinate structures. A series of solid state structures of Cu(II)-(1-BB) and -(2-BB) complexes have been determined. [Cu(1-BB)(DMSO-O)(2)](ClO(4))(2): triclinic, P&onemacr; (No. 2), a = 9.400(1) ?, b = 10.494(2) ?, c = 16.760(2) ?, alpha = 96.67(1) degrees, beta = 97.10(1) degrees, gamma = 108.45(1) degrees, V = 1534.8(5) ?(3), Z = 2, number of unique data [I >/= 3sigma(I)] = 4438, number of refined parameters = 388, R = 0.058. [Cu(1-BB)(DMSO-O)(2)](BF(4))(2): triclinic, P&onemacr; (No. 2), a = 9.304(5) ?, b = 10.428(4) ?, c = 16.834(8) ?, alpha = 96.85(3) degrees, beta = 97.25(3) degrees, gamma = 108.21(2) degrees, V = 1517(1) ?(3), Z = 2, number of unique data [I >/= 2sigma(I)] = 3388, number of refined parameters = 397, R = 0.075. [Cu(1-BB)(DMSO-O)(NO(2))](ClO(4)): triclinic, P&onemacr; (No. 2), a = 7.533(2) ?, b = 8.936(1) ?, c = 19.168(2) ?, alpha = 97.66(1) degrees, beta = 98.62(1) degrees, gamma = 101.06(1) degrees, V = 1234.4(7) ?(3), Z = 2, number of unique data [I >/= 2sigma(I)] = 3426, number of refined parameters = 325, R = 0.081. [Cu(2-BB)(MeOH)(ClO(4))](ClO(4)): triclinic, P&onemacr; (No. 2), a = 8.493(3) ?, b = 10.846(7) ?, c = 14.484(5) ?, alpha = 93.71(4) degrees, beta = 103.13(3) degrees, gamma = 100.61(4) degrees, V = 1270(1) ?(3), Z = 2, number of unique data [I>/= 2sigma(I)] = 2612, number of refined parameters = 352, R = 0.073. [Cu(2-BB)(N(3))](ClO(4)): monoclinic, P2(1)/n (No. 14), a = 12.024(3) ?, b = 12.588(5) ?, c = 15.408(2) ?, beta = 101,90(2) degrees, V = 2282(1) ?(3), Z = 4, number of unique data [I >/= 2sigma(I)] = 2620, number of refined parameters = 311, R = 0.075. [Cu(2-BB)(NO(2))](ClO(4))(MeCN): triclinic, P&onemacr; (No. 2), a = 7.402(2) ?, b = 12.500(1) ?, c = 14.660(2) ?, alpha = 68.14(1) degrees, beta = 88.02(2) degrees, gamma = 78.61(1) degrees, V = 1233.0(4) ?(3), Z = 2, number of unique data [I>/= 2sigma(I)] = 2088, number of refined parameters = 319, R = 0.070. In all the complexes the 1-BB or 2-BB ligands coordinate the Cu(II) cations through their three donor atoms. The complexes with 2-BB appear to be more flexible than those with 1-BB. The nitrito ligand is bidentate in [Cu(2-BB)(NO(2))](ClO(4))(MeCN) and essentially monodentate in [Cu(1-BB)(DMSO-O)(NO(2))](ClO(4)). The copper(I) complexes exhibit nitrite reductase activity and react rapidly with NO(2)(-) in the presence of stoichiometric amounts of acid to give NO and the corresponding copper(II) complexes. Under the same conditions the reactions between the copper(I) complexes and NO(+) yield the same amount of NO, indicating that protonation and dehydration of bound nitrite are faster than its reduction. The NO evolved from the solution was detected and quantitated as the [Fe(EDTA)(NO)] complex. The order of reactivity of the Cu(I) complexes in the nitrite reduction process is [Cu(2-BB)](+) > [Cu(1-BB)](+) > [Cu(TB)](+) > [Cu(AcBB)](+).  相似文献   

10.
The structures and magnetic properties of self-assembled copper(II) clusters and grids with the "tritopic" ligands 2poap (a), Cl2poap (b), m2poap (c), Cl2pomp (d), and 2pomp (e) are described [ligands derived by reaction of 4-R-2,6-pyridinedicarboxylic hydrazide (R = H, Cl, MeO) with 2-pyridinemethylimidate (a-c, respectively) or 2-acetylpyridine (d, R = Cl; e, R = H)]. Cl2poap and Cl2pomp self-assemble with Cu(NO(3))(2) to form octanuclear "pinwheel" cluster complexes [Cu(8)(Cl2poap-2H)(4)(NO(3))(8)].20H(2)O (1) and [Cu(8)(Cl2pomp-2H)(4)(NO(3))(8)].15H(2)O (2), built on a square [2 x 2] grid with four pendant copper arms, using "mild" reaction conditions. Similar reactions of Cl2pomp and 2pomp with Cu(ClO(4))(2) produce pinwheel clusters [Cu(8)(Cl2pomp-2H)(4)(H(2)O)(8)](ClO(4))(8).7H(2)O (3) and [Cu(8)(2pomp-2H)(4)(H(2)O)(8)](ClO(4))(8) (4), respectively. Heating a solution of 1 in MeOH/H(2)O produces a [3 x 3] nonanuclear square grid complex, [Cu(9)(Cl2poap-H)(3)(Cl2poap-2H)(3)](NO(3))(9).18H(2)O (5), which is also produced by direct reaction of the ligand and metal salt under similar conditions. Reaction of m2poap with Cu(NO(3))(2) produces only the [3 x 3] grid [Cu(9)(m2poap-H)(2)(m2poap-2H)(4)](NO(3))(8).17H(2)O (6) under similar conditions. Mixing the tritopic ligand 2poap with pyridine-2,6-dicarboxylic acid (picd) in the presence of Cu(NO(3))(2) produces a remarkable mixed ligand, nonanuclear grid complex [Cu(9)(2poap-H)(4)(picd-H)(3)(picd-2H)](NO(3))(9).9H(2)O (7), in which aromatic pi-stacking interactions are important in stabilizing the structure. Complexes 1-3 and 5-7 involve single oxygen atom (alkoxide) bridging connections between adjacent copper centers, while complex 4 has an unprecedented mixed micro-(N-N) and micro-O metal ion connectivity. Compound 1 (C(76)H(92)N(44)Cu(8)O(50)Cl(4)) crystallizes in the tetragonal system, space group I, with a = 21.645(1) A, c = 12.950(1) A, and Z = 2. Compound 2 (C(84)H(88)N(36)O(44)Cl(4)Cu(8)) crystallizes in the tetragonal system, space group I, with a = 21.2562(8) A, c = 12.7583(9) A, and Z = 2. Compound 4 (C(84)H(120)N(28)O(66)Cl(8)Cu(8)) crystallizes in the tetragonal system, space group I4(1)/a, with a = 20.7790(4) A, c = 32.561(1) A, and Z = 4. Compound 7(C(104)H(104)N(46)O(56)Cu(9)) crystallizes in the triclinic system, space group P, with a = 15.473(1) A, b = 19.869(2) A, c = 23.083(2) A, alpha = 88.890(2) degrees, beta = 81.511(2) degrees, gamma = 68.607(1) degrees, and Z = 2. All complexes exhibit dominant intramolecular ferromagnetic exchange coupling, resulting from an orthogonal bridging arrangement within each polynuclear structure.  相似文献   

11.
By using tridentate ligand 4-(3-pyridinyl)-1,2,4-triazole (pytrz), cage-like complexes of {[Cu(mu2-pytrz)2](ClO4)(SO4)0.5C2H5OH.0.25 H2O}6 (1), {[Cu3(mu3-pytrz)4(mu2-Cl)2(H2O)2](ClO4)2Cl(2).2 H2O}n (2), and {[Cu3(mu3-pytrz)3(mu3-O)(H2O)3](ClO4)2.5(BF4)(1.5)5.25 H2O}n (3) have been synthesized with different copper(II) salts. Complex 1 represents the second example of a M6L12 metal-organic octahedron with an overall Th symmetry. Complex 2 is constructed from a 3(8) cage-building unit (CBU) and each CBU connects six neighboring cages to give the first 3D metal-organic framework (MOF) based on octahedral M6L12. Complex 3 is built from Cu24(pytrz)12 CBUs with the trinuclear copper clusters serving as second building units (SBUs) and decorating each corner of the M24L12 polyhedron. The Cu24(pytrz)12 building unit is linked by extra ligands to give an extended 3D framework that has the formula Cu24(pytrz)24 and possesses a CaB6 topology. The mixed anions ClO4- and BF4- in 3 are both included in the inner cavity of the cage and can be completely exchanged by ClO4- through the open windows of the cage, as evidenced by the crystal structure of the 3D MOF {[Cu3(mu3-pytrz)3(mu3-O)(H2O)3](ClO4)(4)4.5 H2O}n (4). Complex 4 can also be synthesized when employing 1 as a precursor in an extensive study of the anion-exchange reaction. This represents the first successful conversion of a discrete cage into a 3D coordination network based on a cage structure. Complex 2 remains invariable during anion-exchange reactions because uncoordinated Cl- ions are located in the comparatively small inner cavity.  相似文献   

12.
Formate is an inhibitor of cytochrome oxidases and also effects conversion of the bovine heart enzyme from the "fast" to the "slow" cyanide-binding form. The molecular basis of these effects is unknown; one possibility is that formate inserts as a bridge into the binuclear heme a(3)-Cu(B) site, impeding the binding of dioxygen or cyanide. Consequently, Fe-Cu-carboxylate interactions are a matter of current interest. We have initiated an examination of such interactions by the synthesis of the first examples of [Fe(III)-(&mgr;(2):eta(2)-RCO(2))-Cu(II)] bridges, minimally represented by Fe(III)-L + Cu(II)-O(2)CR --> [Fe(III)-(RCO(2))-Cu(II)] + L. A series of Cu(II) precursor complexes and solvate forms have been prepared and their structures determined, including [Cu(Me(5)dien)(O(2)CH)](+) (3), [Cu(Me(5)dien)(O(2)CH)(MeOH)](+) (4), [Cu(Me(6)tren)(O(2)CH)](+) (5), and [Cu(Me(5)dien)(OAc)](+) (6). [4](ClO(4)) was obtained in monoclinic space group P2(1)/n with a = 8.166(3) ?, b = 15.119(5) ?, c = 15.070(4) ?, beta = 104.65(2) degrees, and Z = 4. [5](ClO(4))/[6](ClO(4)) crystallize in orthorhombic space groups Pnma/Pna2(1) with a = 16.788(2)/14.928(5) ?, b = 9.542(1)/9.341(4) ?, c = 12.911(1)/12.554(4) ?, and Z = 4/4. In all cases, the carboxylate ligand is terminal and is bound in a syn orientation. Also prepared for the purpose of structural comparison was [Fe(OEP)(O(2)CH)], which occurred in monoclinic space group P2(1)/c with a = 13.342(2) ?, b = 13.621(2) ?, c = 19.333(2) ?, beta = 106.12(2) degrees, and Z = 4. The desired bridges were stabilized in the assemblies [(OEP)Fe(O(2)CH)Cu(Me(5)dien)(OClO(3))](+) (9), [(OEP)Fe(OAc)Cu(Me(5)dien)](2+) (10), and {(OEP)Fe[(O(2)CH)Cu(Me(6)tren)](2)}(3+) (11), which were prepared by the reaction of 3, 6, and 5, respectively, with [Fe(OEP)(OClO(3))] in acetone or dichloromethane. [9](ClO(4))/[10](ClO(4))(2).CH(2)Cl(2) crystallize in triclinic space group P&onemacr; with a = 9.016(3)/13.777(3) ?, b = 15.377(5)/13.847(3) ?, c = 19.253(5)/17.608(4) ?, alpha = 78.12(3)/96.82(3) degrees, beta = 86.30(4)/108.06(3) degrees, gamma = 76.23(3)/114.32(3) degrees, and Z = 2/2. Each assembly contains a [Fe(III)-(RCO(2))-Cu(II)] bridge but with the differing orientations anti-anti (9) and syn-anti (10, 11). The compound [11](ClO(4))(2)(SbF(6)) occurs in orthorhombic space group Pbcn with a = 12.517(6) ?, b = 29.45(1) ?, c = 21.569(8) ?, and Z = 4. Complex 11 is trinuclear; the Fe(III) site has two axial formate ligands with bond distances indicative of a high-spin configuration. Structural features of 9-11 are discussed and are considered in relation to the possible insertion of formate into the binuclear sites of two oxidases whose structures were recently determined. The present results contribute to the series of molecular assemblies with the bridge groups [Fe(III)-X-Cu(II)], X = O(2)(-), OH(-), and RCO(2)(-), all with a common high-spin heme, thereby allowing an examination of electronic structure as dependent on the bridging atom or group and bridge structure. (Me(5)dien = 1,1,4,7,7-pentamethyldiethylenetriamine; Me(6)tren = tris(2-(dimethylamino)ethyl)amine; OEP = octaethylporphyrinate(2-).)  相似文献   

13.
The syntheses, structural characterization and magnetic behavior of five new copper(II) polynuclear compounds with formulae [Cu4(mu2-CH3COO)2(mu-bdmap)2(micro(1,5)-dca)2(dca)2(H2O)2] 1, [Cu2(mu2-CH3COO)(mu-bdap)(mu(1,1,5)-dca)(mu(1,3)-dca)]n 2, [Cu4(mu2-CH3COO)2(mu-bdmap)2(mu(1,1)-NCS)2(NCS)2] 3, [Cu2(mu2-CH3COO)(mu-bdap)(NCS)2] 4 and [Cu2(mu(1,3)-N3)(mu-bdmap)(N3)2]n 5 in which bdmapH is 1,3-bis(dimethylamino)-2-propanol, bdapH is 1,3-bis(amino)-2-propanol and dca is the anionic dicyanamide ligand, are reported herein. Tetranuclear complex 1 crystallizes in the monoclinic system, space group P2(1)/n, with unit cell parameters a = 8.284(8), b = 21.52(1), c = 11.432(3) A, beta = 105.19(2) degrees , Z = 2. Bi-dimensional complex 2 crystallizes in the triclinic system, space group P1, with unit cell parameters a = 8.184(5), b = 8.792(2), c = 10.887(2) A, alpha = 75.65(2), beta = 76.55(3), gamma = 74.36(3) degrees , Z = 2. Tetranuclear complex 3 crystallizes in the triclinic system, space group P1, with unit cell parameters a = 8.455(4), b = 9.114(9), c = 12.744(8) A, alpha = 104.62(8), beta = 99.86(6), gamma = 106.10(8) degrees, Z = 1. Dinuclear complex 4 crystallizes in the triclinic system, space group P1, with unit cell parameters a = 8.15(1), b = 8.18(2), c = 11.44(1) A, alpha = 69.39(2), beta = 80.36(2), gamma = 80.37(2) degrees , Z = 2. One-dimensional complex 5 crystallizes in the orthorhombic system, space group P2(1)2(1)2(1), with unit cell parameters a = 20.45(4), b = 11.36(3), c = 6.43(1) A, Z = 4. The magnetic behavior of all the complexes has been checked giving a bulk antiferromagnetic coupling in all the cases with |J| values in the range 109-144 cm(-1) for 1-4. Compound 5 is diamagnetic in the 2-300 K range of temperatures. The found J values 1-5 for can be justified from the structural data taking into account the orbital countercomplementarity for 1-4 and the orbital complementarity for 5.  相似文献   

14.
New complexes of Rh(III), Ru(II), and Pd(II) with N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (tpen) and its analogues have been prepared. The reaction of RhCl(3).nH(2)O with tpen is slow and allows one to isolate the products of three consecutive substitution steps: Rh(2)Cl(6)(tpen) (1), cis-[RhCl(2)(eta(4)-tpen)](+) (2), and [RhCl(eta(5)-tpen)](2+) (3). In acetonitrile the reaction stops at the step of the formation of cis-[RhCl(2)(eta(4)-tpen)](+), whereas [RhCl(eta(5)-tpen)](2+) is the final product of the further reaction in ethanol. Fully chelated [Rh(tpen)](3+) could not be obtained. Bis(acetylacetonato)palladium(II), Pd(acac)(2), reacts with tpen and its analogues, N,N,N',N'-tetrakis(2-pyridylmethyl)-1,3-propanediamine (tptn) and N,N,N',N'-tetrakis(2-pyridylmethyl)-(R)-1,2-propylenediamine (R-tppn), to give [Pd(eta(4)-tpen)](2+) (4), [Pd(eta(4)-tppn)](2+) (5), and [Pd(eta(4)-tptn)](2+) (6), respectively. Two pyridyl arms remain uncoordinated in these cases. The formation of unstable Pd(III) complexes from these Pd(II) complexes in solution was suggested on the basis of electrochemical measurements. Ruthenium(III) trichloride, RuCl(3).nH(2)O, is reduced to give a Ru(II) complex with fully coordinated tpen, [Ru(tpen)](2+) (7). The same product was obtained in a more straightforward reaction of Ru(II)Cl(2)(dimethyl sulfoxide)(4) with tpen. Electrochemical studies showed a quasi-reversible [Ru(tpen)](2+/3+) couple for [7](ClO(4))(2) (E(1/2) = 1.05 V vs Ag/AgCl). Crystal structures of [2](PF(6)).2CH(3)CN, [3](PF(6))(2).CH(3)CN, [6](ClO(4))(2), and [7](ClO(4))(2).0.5H(2)O were determined. Crystal data: [2](PF(6)).2CH(3)CN, monoclinic, C2, a = 16.974(4) A, b = 8.064(3) A, c = 13.247(3) A, beta = 106.37(2) degrees, V = 1739.9(8) A(3), Z = 2; [3](PF(6))(2).CH(3)CN, triclinic, P1, a = 11.430(1) A, b = 19.234(3) A, c = 8.101(1) A, alpha = 99.43(1) degrees, beta = 93.89(1) degrees, gamma = 80.10(1) degrees, V = 1729.3(4) A(3), Z = 2; [6](ClO(4))(2), orthorhombic, Pnna, a = 8.147(1) A, b = 25.57(1) A, c = 14.770(4) A, V = 3076(3) A(3), Z = 4; [7](ClO(4))(2).0.5H(2)O, monoclinic, P2(1)/c, a = 10.046(7) A, b = 19.049(2) A, c = 15.696(3) A, beta = 101.46(3) degrees, V = 2943(2) A(3), Z = 4.  相似文献   

15.
Employing a binucleating phenol-containing ligand PD'OH, a mu-phenoxo-mu-hydroperoxo dicopper(II) complex [Cu(II)2(PD'O-)(-OOH)(RCN)2](ClO4)2 (1, R = CH3, CH3CH2 or C6H5CH2; lambda(max) = 407 nm; nu(O-O) = 870 cm(-1); J. Am. Chem. Soc. 2005, 127, 15360) is generated by reacting a precursor dicopper(I) complex [Cu(I)2(PD'OH)(CH3CN)2](ClO4)2 (2) with O2 in nitrile solvents at -80 degrees C. Species 1 is unable to oxidize externally added substrates, for instance, PPh3, 2,4-tert-butylphenol, or 9,10-dihydroanthracene. However, upon thermal decay, it hydroxylates copper-bound organocyanides (e.g., benzylcyanide), leading to the corresponding aldehyde while releasing cyanide. This chemistry mimics that known for the copper enzyme dopamine-beta-monooxygenase. The thermal decay of 1 also leads to a product [Cu(II)3(L")2(Cl-)2](PF6)2 (6); its X-ray structure reveals that L" is a Schiff base-containing ligand which apparently derives from both oxidative N-dealkylation and then oxidative dehydrogenation of PD'OH; the chloride presumably derives from the CH2Cl2 solvent. With an excess of PPh3 added to 1, a binuclear Cu(I) complex [Cu(I)2(L')(PPh3)2](ClO4)2 (5) with a cross-linked PD'OH ligand L' has also been identified and crystallographically and chemically characterized. The newly formed C-O bond and an apparent k(H)/k(D) = 2.9 +/- 0.2 isotope effect in the benzylcyanide oxidation reaction suggest a common ligand-based radical forms during compound 1 thermal decay reactions. A di-mu-hydroxide-bridged tetranuclear copper(II) cluster compound [{Cu(II)2(PD'O-)(OH-)}2](ClO4)4 (8) has also been isolated following warming of 1. Its formation is consistent with the generation of [Cu(II)2(PD'O-)(OH-)]2+, with dimerization a reflection of the large Cu...Cu distance and thus the preference for not having a second bridging ligand atom (in addition to the phenolate O) for dicopper(II) ligation within the PD'O- ligand framework.  相似文献   

16.
The complexes of general formula [ML]2[Mn(NCS)4](ClO4)2 (where M = Cu(II), Ni(II); L = N-dl-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene) were obtained and the crystal structures of both heteronuclear compounds were determined at 173 K. Complex [CuL]2[Mn(NCS)4](ClO4)2 (1) crystallizes in a monoclinic space group, C2/c, with a = 41.297(9) A, b = 7.571(2) A, c = 16.417(4) A, beta = 96.97(15) degrees, Z = 8, whereas complex [NiL]2[Mn(NCS)4](ClO4)2.H2O (2) crystallizes in a monoclinic space group, P2/c, with a = 21.018(5) A, b = 7.627(2) A, c = 16.295(4) A, beta = 104.47(1) degrees, Z = 4. The magnetic behaviour of (1) and (2) has been investigated over the temperature range 1.8-300 K. Complex (1) displays ferromagnetic coupling inside the trinuclear core of CuMnCu and compound (2) behaves like a mononuclear Mn(II) system. The magnetic properties of the second compound (2) with a similar trinuclear structure shows that Ni(II) ions have a diamagnetic character and a rather weak zero-field splitting at the central Mn(II) ion occurs. Finally, the magnitudes of the Cu(II)-M(II) interactions with M = Ni and Mn have been compared and qualitatively justified.  相似文献   

17.
Evans OR  Lin W 《Inorganic chemistry》2000,39(10):2189-2198
Hydro(solvo)thermal reactions between cadmium(II) perchlorate and 4-pyridinecarboxaldehyde in the presence of various guest molecules have resulted in a series of 3-D coordination polymers based on tricadmium carboxylates [Cd6(isonicotinate)10(H2O)2](ClO4)2(EtOH)4(H2O)4, 1, [Cd3(isonicotinate)5 (EtOH)](ClO4)(EtOH)(4-nitroaniline)0.5, 2, and [Cd6(isonicotinate)11](ClO4)(EtOH)2(H2O)2(4-cyanopyridine)0.5, 3. X-ray single crystal structure determinations show that they exhibit similar pillared, 3D framework structures based on tricadmium carboxylate building blocks. Rectangular channels are clearly present in these polymeric networks and are occupied by perchlorate anions and disordered guest molecules. Quantitative NMR and X-ray powder diffraction studies and thermogravimetric analyses (TGA) reveal that these coordination networks are capable of accommodating different guest molecules. More significantly, the guest molecules can be readily removed via evacuation to result in nanoporous polymeric coordination networks retaining the framework structures of the pristine solids. Crystal data for 1: monoclinic space group P2(1)/n, a = 19.041(1) A, b = 23.654(1) A, c = 21.568(1) A, beta = 95.440(1) degrees, and Z = 4. Crystal data for 2: triclinic space group P1, a = 12.050(1) A, b = 12.277(1) A, c = 19.103(1) A, alpha = 91.669(1) degrees, beta = 96.850(1) degrees, gamma = 117.945(1) degrees, and Z = 2. Crystal data for 3: monoclinic space group P2(1)/n, a = 19.038(1) A, b = 23.834(1) A, c = 21.756(1) A, beta = 97.580(1) degrees, and Z = 4.  相似文献   

18.
The construction of two unique, high-nuclearity Cu(II) supramolecular aggregates with tetrahedral or octahedral cage units, [(mu(3)-Cl)[Li subset Cu(4)(mu-L(1))(3)](3)](ClO(4))(8)(H(2)O)(4.5) (1) and [[Na(2) subset Cu(12)(mu-L(2))(8)(mu-Cl)(4)](ClO(4))(8)(H(2)O)(10)(H(3)O(+))(2)](infinity) (2) by alkali-metal-templated (Li(+) or Na(+)) self-assembly, was achieved by the use of two newly designed carboxylic-functionalized diazamesocyclic ligands, N,N'-bis(3-propionyloxy)-1,4-diazacycloheptane (H(2)L(1)) or 1,5-diazacyclooctane-N,N'-diacetate acid (H(2)L(2)). Complex 1 crystallizes in the trigonal R3c space group (a = b = 20.866(3), c = 126.26(4) A and Z = 12), and 2 in the triclinic P1 space group (a = 13.632(4), b = 14.754(4), c = 19.517(6) A, alpha = 99.836(6), beta = 95.793(5), gamma = 116.124(5) degrees and Z = 1). By subtle variation of the ligand structures and the alkali-metal templates, different polymeric motifs were obtained: a dodecanuclear architecture 1 consisting of three Cu(4) tetrahedral cage units with a Li(+) template, and a supramolecular chain 2 consisting of two crystallographically nonequivalent octahedral Cu(6) polyhedra with a Na(+) template. The effects of ligand functionality and alkali metal template ions on the self-assembly processes of both coordination supramolecular aggregates, and their magnetic behaviors are discussed in detail.  相似文献   

19.
Slow evaporation of solutions prepared by adding either Cu(ClO(4))(2).6H(2)O or Zn(ClO(4))(2).6H(2)O to solutions containing appropriate proportions of Me(3)tacn (1,4,7-trimethyl-1,4,7-triazacyclononane) and sodium phenyl phosphate (Na(2)PhOPO(3)) gave dark blue crystals of [Cu(3)(Me(3)tacn)(3)(PhOPO(3))(2)](ClO(4))(2).(1)/(2)H(2)O (1) and colorless crystals of [Zn(2)(Me(3)tacn)(2)(H(2)O)(4)(PhOPO(3))](ClO(4))(2).H(2)O (2), respectively. Blue crystals of [Cu(tacn)(2)](BNPP)(2) (3) formed in an aqueous solution of [Cu(tacn)Cl(2)], bis(p-nitrophenyl phosphate) (BNPP), and HEPES buffer (pH 7.4). Compound 1 crystallizes in the triclinic space group P1 (No. 2) with a = 9.8053(2) A, b = 12.9068(2) A, c = 22.1132(2) A, alpha = 98.636(1) degrees, beta = 99.546(1) degrees, gamma = 101.1733(8) degrees, and Z = 2 and exhibits trinuclear Cu(II) clusters in which square pyramidal metal centers are capped by two phosphate esters located above and below the plane of the metal centers. The trinuclear cluster is asymmetric having Cu...Cu distances of 4.14, 4.55, and 5.04 A. Compound 2 crystallizes in the monoclinic space group P2(1)/c (No. 14) with a = 13.6248(2) A, b = 11.6002(2) A, c = 25.9681(4) A, beta = 102.0072(9) degrees, and Z = 4 and contains a dinuclear Zn(II) complex formed by linking two units of [Zn(Me(3)tacn)(OH(2))(2)](2+) by a single phosphate ester. Compound 3 crystallizes in the monoclinic space group C2/c (No. 15) with a = 24.7105(5) A, b = 12.8627(3) A, c = 14.0079(3) A, beta = 106.600(1) degrees, and Z = 4 and consists of mononuclear [Cu(tacn)(2)](2+) cations whose charge is balanced by the BNPP(-) anions.  相似文献   

20.
A series of putative mono- and binuclear copper(II) complexes, of general formulas [CuL](ClO(4)) and [Cu(2)L](ClO(4))(2), respectively, have been synthesized from lateral macrocyclic ligands that have different compartments, originated from their corresponding precursor compounds (PC-1, 3,4:9,10-dibenzo-1,12-[N,N'-bis[(3-formyl-2-hydroxy-5-methyl)benzyl]diaza]-5,8-dioxacyclotetradecane; and PC-2, 3,4:9,10-dibenzo-1,12-[N,N'-bis[(3-formyl-2-hydroxy-5-methyl)benzyl]diaza]-5,8-dioxacyclopentadecane). The precursor compound PC-1 crystallized in the triclinic system with space group P(-)1. The mononuclear copper(II) complex [CuL(1a)](ClO(4)) is crystallized in the monoclinic system with space group P2(1)/c. The binuclear copper(II) complex [Cu(2)L(2c)](ClO(4))(2) is crystallized in the triclinic system with space group P(-)1; the two Cu ions have two different geometries. Electrochemical studies evidenced that one quasi-reversible reduction wave (E(pc) = -0.78 to -0.87 V) for mononuclear complexes and two quasi-reversible one-electron-transfer reduction waves (E(1)(pc) = -0.83 to -0.92 V, E(2)(pc) = -1.07 to -1.38 V) for binuclear complexes are obtained in the cathodic region. Room-temperature magnetic-moment studies convey the presence of antiferromagnetic coupling in binuclear complexes [mu(eff) = (1.45-1.55)mu(B)], which is also suggested from the broad ESR spectra with g = 2.10-2.11, whereas mononuclear complexes show hyperfine splitting in ESR spectra and they have magnetic-moment values that are similar to the spin-only value [mu(eff) = (1.69-1.72)mu(B)]. Variable-temperature magnetic susceptibility study of the complex shows that the observed -2J value for the binuclear complex [Cu(2)L(1b)](ClO(4))(2) is 214 cm(-1). The observed initial rate-constant values of catechol oxidation, using complexes as catalysts, range from 4.89 x 10(-3) to 5.32 x 10(-2) min(-1) and the values are found to be higher for binuclear complexes than for the corresponding mononuclear complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号