首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In pulmonary tuberculosis, Mycobacterium tuberculosis bacteria reside in the alveoli and are in close proximity with the alveolar surfactant. Mycolic acid in its free form and as cord factor, constitute the major lipids of the mycobacterial cell wall. They can detach from the bacteria easily and are known to be moderately surface active. We hypothesize that these surface-active mycobacterial cell wall lipids could interact with the pulmonary surfactant and result in lung surfactant dysfunction. In this study, the major phospholipid of the lung surfactant, dipalmitoylphosphatidylcholine (DPPC) and binary mixtures of DPPC:phosphatidylglycerol (PG) in 9:1 and 7:3 ratios were modelled as lung surfactant monolayers and the inhibitory potential of mycolic acid and cord factor on the surface activity of DPPC and DPPC:PG mixtures was evaluated using Langmuir monolayers. The mycobacterial lipids caused common profile changes in all the isotherms: increase in minimum surface tension, compressibility and percentage area change required for change in surface tension from 30 to 10 mN/m. Higher minimum surface tension values were achieved in the presence of mycolic acid (18.2 ± 0.7 mN/m) and cord factor (13.28 ± 1.2 mN/m) as compared to 0 mN/m, achieved by pure DPPC film. Similarly higher values of compressibility (0.375 ± 0.005 m/mN for mycolic acid:DPPC and 0.197 ± 0.003 m/mN for cord factor:DPPC monolayers) were obtained in presence of mycolic acid and cord factor. Thus, mycolic acid and cord factor were said to be inhibitory towards lung surfactant phospholipids. Higher surface tension and compressibility values in presence of tubercular lipids are suggestive of an unstable and fluid surfactant film, which will fail to achieve low surface tensions and can contribute to alveolar collapse in patients suffering from pulmonary tuberculosis. In conclusion a biophysical inhibition of lung surfactant may play a role in the pathogenesis of tuberculosis and may serve as a target for the development of new drug loaded surfactants for this condition.  相似文献   

2.
We have studied the structure of films made by low density lipoproteins (LDL) from hen egg yolk, which are composed of apoproteins, neutral lipids and phospholipids. These LDL have been deposited on air–water interface to form a monolayer which has been compressed to measure an isotherm using Langmuir balance. This isotherm presented three transitions (neutral lipid (surface pressure, π = 19 mN/m), apoprotein–lipid (π = 41 mN/m) and phospholipid (π = 51 mN/m) transitions). We have studied only the apoprotein–lipid transition. In order to observe the LDL film structure before (π = 30 mN/m) and after (π = 45 mN/m) the apoprotein–lipid transition, the formed films were transferred and visualised by atomic force microscopy (AFM). Our results have shown that the structures observed in the LDL film were different depending on the surface pressure. The apoproteins and neutral lipids appeared to be miscible up to the apoprotein–lipid transition, when demixing occured. The structures observed after the apoprotein–lipid transition should be due to the demixing between apoproteins and neutral lipids. On the other hand, apoproteins and phospholipids seemed miscible whatever the surface pressure. Hence, the first transition (π = 19 mN/m) should be attributed to the free neutral lipid collapse; the second transition (π = 41 mN/m) should be attributed to the demixing of apoprotein–neutral lipid complexes; and the last transition (π = 51 mN/m) should be attributed to phospholipid collapse or to demixing of apoprotein–phospholipid complexes.  相似文献   

3.
Surfactant replacement therapy has a vital role in the management of respiratory distress syndrome (RDS). Several techniques and models have been largely used to investigate interfacial physico-chemical properties in vitro and to assist clinical efficiency of exogenous surfactant preparations (ESPs) in vivo. Among them are interfacial tensiometry (Langmuir balance coupled with Wilhelmy plate method for surface tension measurement) and black foam film (BFF) method for measuring the capability of ESPs for bilayer foam film formation.

Here, we report some freshly established data from a comparative study of Exosurf, Survanta, Curosurf, Alveofact and clinical samples of tracheal aspirate (TA) of newborns with RDS treated with Curosurf. New observations concerning the properties of foam films of ESPs are also reported and discussed.

Measured interfacial physico-chemical parameters prove “better” properties in vitro of the SP-B and -C containing preparations Curosurf and Alveofact. Their properties are similar, Alveofact showing a higher surface tension lowering capacity under dynamic conditions.

A comparison with measured interfacial parameters of clinical samples shows that after treatment with Curosurf the phospholipid concentration in tracheal aspirates (367 μg/ml) is higher than the minimum phospholipid concentration for stable black film formation (Ct) of all four ESPs studied, while before treatment this concentration (63 μg/ml) is lower than Ct.

Values of measured “dynamic” parameters of clinical samples after treatment with Curosurf approach those of the exogenous surfactant preparation itself.  相似文献   


4.
A cassava flour-processing effluent (manipueira) was evaluated as a substrate for surfactant production by two Bacillus subtilis strains. B. subtilis ATCC 21332 reduced the surface tension of the medium to 25.9 mN/m, producing a crude biosurfactant concentration of 2.2 g/L. The wild-type strain, B. subtilis LB5a, reduced the surface tension of the medium to 26.6 mN/m, giving a crude biosurfactant concentration of 3.0 g/L. A decrease in surfactant concentration observed for B. subtilis ATCC 21332 seemed to be related to an increase in protease activity. The biosurfactant produced on cassava effluent medium by B. subtilis LB5a was similar to surfactin.  相似文献   

5.
The production of biosurfactant by Bacillus subtilis ATCC 6633 was investigated using commercial sugar, sugarcane juice and cane molasses, sugarcane juice alcohol stillage, glycerol, mannitol, and soybean oil. Commercial sugar generated the minimum values of surface tension, with the best results (28.7 mN/m, (relative critical micelle concentration [CMC−1] of 78.6) being achieved with 10 g of substrate/L in 48 h. At a pH between 7.0 and 8.0, a higher production of surface-active compounds and a greater emulsifier activity was also observed. Enrichment of the culture medium with trace minerals and EDTA showed maximum yields, whereas supplementation with yeast extract stimulated only cell growth. The kinetic studies revealed that biosurfactant production is a cell growth-associated process; surface tension, CMC, and emulsification index values of 29.6 dyn/cm, 82.3, and 57%, respectively, were achieved, thus indicating that it is feasible to produce biosurfactants from a renewable and low-cost carbon source.  相似文献   

6.
The production of biosurfactant, a surface-active compound, by two Serratia marcescens strains was tested on minimal culture medium supplemented with vegetable oils, considering that it is well known that these compounds stimulate biosurfactant production. The vegetable oils tested included soybean, olive, castor, sunflower, and coconut fat. The results showed a decrease in surface tension of the culture medium without oil from 64.54 to 29.57, with a critical micelle dilution (CMD−1) and CMD−2 of 41.77 and 68.92 mN/m, respectively. Sunflower oil gave the best results (29.75 mN/m) with a CMD−1 and CMD−2 of 36.69 and 51.41 mN/m, respectively. Sunflower oil contains about 60% of linoleic acid. The addition of linoleic acid decreased the surface tension from 53.70 to 28.39, with a CMD−1 of 29.72 and CMD−2 of 37.97, suggesting that this fatty acid stimulates the biosurfactant production by the LB006 strain. In addition, the crude precipitate surfactant reduced the surface tension of water from 72.00 to 28.70 mN/m. These results suggest that the sunflower oil’s linoleic acid was responsible for the increase in biosurfactant production by the LB006 strain.  相似文献   

7.
生物基表面活性剂由于其可再生资源和优异的表面/界面性质吸引了越来越多的关注。本文以可再生的油酸为原料,通过四步反应,制备了新型生物基支链表面活性剂,并评价了其表/界面性质、润湿性和生物降解性能。该新型生物基支链表面活性剂为4-(1-十七烷基)苯磺酸钠(9ΦC17S),依次经过烷基化反应、脱羧反应、磺化反应和中和反应而制得。其化学结构已通过电喷雾质谱、红外光谱和核磁共振波谱得以确认。4-(1-十七烷基)苯磺酸钠展现出良好的表/界面张力,临界胶束浓度(CMC)为317.5 mg·L-1,CMC处的表面张力为32.54 mN·m-1,当水溶液中碳酸钠浓度为8.48×104 mg·L-1、4-(1-十七烷基)苯磺酸钠浓度为8.36×104 mg·L-1时,油水的界面张力约为10-2 mN·m-1。此外,4-(1-十七烷基)苯磺酸钠在生物降解性和润湿性方面也显示出了良好的性能,最终生物降解评分为2.99,0.500 g·L-1 9ΦC17S溶液的气液固接触角为63.08°。该新型生物基表面活性剂丰富了以可再生资源为原料的生物基表面活性剂的结构多样性。  相似文献   

8.
The adsorption behavior of dipalmitoylphosphatidylcholine (DPPC), which is the major component of lung surfactant, at the air/aqueous interface and the competitive adsorption with bovine serum albumin (BSA) were studied with tensiometry, infrared reflection absorption spectroscopy (IRRAS), and ellipsometry. Dynamic surface tensions lower than 1 mN/m were observed for DPPC dispersions, with mostly vesicles, prepared with new protocols, involving extensive sonication above 50 °C. The lipid adsorbs faster and more extensively for DPPC dispersions with vesicles than with liposomes. For DPPC dispersions by a certain preparation procedure at T > Tc, when lipid particles were observed on the surface, dynamic surface tensions as low as 1 mN/m were measured. Moreover, IRRAS intensities and ellipsometric δΔ values were found to be much higher than the values for other DPPC dispersions or spread DPPC monolayers, suggesting that a larger amount of liposomes or vesicles adsorb on the surface. For DPPC/BSA mixtures, the tension behavior is controlled primarily by BSA, which prevents the formation of a dense DPPC monolayer. When BSA is injected into the subphase with a spread DPPC monolayer or into a DPPC dispersion with preadsorbed layers, little or no BSA adsorbs and the DPPC layer remains on the surface. When a DPPC monolayer is spread on a BSA solution at 0.1 wt% at 25 °C, then DPPC lipid can displace the adsorbed BSA molecules. The lack of BSA adsorption, and the expulsion of BSA by DPPC monolayer is probably due to the strong hydrophilicity of the lipid polar headgroup. When a DPPC dispersion is introduced with Trurnit's method or when dispersion drops are sprayed onto the surface of a DPPC/BSA mixture, the surface tension becomes lower and is controlled by DPPC, which can prevent the adsorption of BSA. The results may be important in understanding inhibition of lung surfactants by serum proteins and in designing efficient protocols of surfactant preparation and administration.  相似文献   

9.
The highest yields of biosurfactants were obtained by: (i) Pseudozyma antarctica (107.2 g L?1) cultivated in a medium containing post-refining waste; (ii) Pseudozyma aphidis (77.7 g L?1); and (iii) Starmerella bombicola (93.8 g L?1) both cultivated in a medium with soapstock; (iv)Pichia jadinii (67.3 g L?1) cultivated in a medium supplemented with waste frying oil. It was found that the biosurfactant synthesis yield increased in all strains when the cell surface hydrophobicity reached 70–80 %, enabling the microbial cells to make good contact with hydrophobic substrates. The lowest surface tension of the post-cultivation medium was from 32.0 mN m?1 to 37.8 mN m?1. However, this parameter (which was also determined by a drop collapse assay) was of limited use in monitoring biosurfactant synthesis in this study. The crude glycerol was not a good substrate for biosurfactant synthesis although, in the case of P. aphidis, 67.4 g L?1 of biosurfactants were obtained after cultivation in the medium supplemented with glycerol fraction (GF2). In a low-cost medium containing soapstock and whey permeate or molasses, about 90 g L?1 of mannosylerythritol lipids were synthesised by P. aphidis and approximately 40 g L?1 by P. antarctica.  相似文献   

10.
硒,作为一种新的氧化-还原响应位点因其良好的生物相容性日益引起人们的关注,然而,对这种新型氧化-还原响应型表面活性剂的研究相对较少,尤其是其界面性能的智能调控。本文以含硒两性离子表面活性剂苄基十一烷基磺基甜菜碱(BSeUSB)为对象,研究了其分子结构、Krafft温度、表/界面张力及发泡和乳化性能的氧化-还原刺激响应行为。发现在极微量的H_2O_2(≤体系总质量的0.056%)氧化下,BSeUSB分子中疏水的―Se―C―键转变成了具有一定亲水能力的Se=O键,表面活性剂从单头单尾的还原态变成了类Bola型的氧化态,导致表面活性剂的Krafft温度由(23.5±0.5)°C下降至0°C以下,5.00 mmol?L~(-1)时的表/界面张力分别从45.15、5.52 mN·m~(-1)升高至61.63、18.38 m N·m~(-1)。宏观上,还原态具有良好的发泡和乳化性能,而氧化态的发泡和乳化能力几乎消失。再次加入极少量还原剂Na_2SO_3(≤体系总质量的0.060%)后,分子的微观结构和溶液性能又可恢复到初始状态。总之,通过极微量H_2O_2和Na_2SO_3的交替加入,我们实现了该表面活性剂界面性能的智能调控。  相似文献   

11.
Dynamic tension and adsorption behavior of aqueous lung surfactants   总被引:2,自引:0,他引:2  
The dynamic tension behavior, at constant or at pulsating area conditions, of two commercial lung surfactants in saline is reported. The bubble method, at constant or pulsating area, at 37°C and the pendant drop method at 23°C were used. For Exosurf, a commercial synthetic lung surfactant consisting of dissolved tyloxapol and dispersed dipalmitoylphosphatidylcholine (or DPPC) and hexadecanol (H), the equilibrium and dynamic tensions are high (over 30 mN m−1) and similar to those of tyloxapol alone. Aqueous DPPC/H mixtures have lower tensions than Exosurf. Survanta, a commercial lung surfactant replacement drug consisting of DPPC, other lipids, and two hydrophobic lung surfactant proteins, produces dynamic surface tensions that are substantially lower than those of Exosurf. Diluted 10-fold, Survanta produces under pulsating area (at 20 cycles min−1) lower minimum tensions than undiluted Survanta (6 vs. 12 mN m−1), but higher maximum tensions. In addition, Survanta tension behavior is unusual, having three local maxima and three local minima per cycle, suggesting major variations of its surface composition in each cycle. Monolayer pressure-area isotherms and Fourier transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy results on deposited Langmuir–Blodgett films support this suggestion. They also provide direct evidence of the presence of phospholipids (DPPC or others) on the surface, but only indirect evidence of the presence of other components, on the surface of aqueous Exosurf or Survanta.  相似文献   

12.
In pulmonary tuberculosis, Mycobacterium tuberculosis lies in close physical proximity to alveolar surfactant. Cell walls of the mycobacteria contain loosely bound, detachable surface-active lipids. In this study, the effect of mycolic acid (MA), the most abundant mycobacterial cell wall lipid, on the surface activity of phospholipid mixtures from lung surfactant was investigated using Langmuir monolayers and atomic force microscopy (AFM). In the presence of mycolic acid, all the surfactant lipid mixtures attained high minimum surface tensions (between 20 and 40 mN/m) and decreased surface compressibility moduli <50 mN/m. AFM images showed that the smooth surface topography of surfactant lipid monolayers was altered with addition of MA. Aggregates with diverse heights of at least two layer thicknesses were found in the presence of mycolic acid. Mycolic acids could aggregate within surfactant lipid monolayers and result in disturbed monolayer surface activity. The extent of the effect of mycolic acid depended on the initial state of the monolayer, with fluid films of DPPC-POPC and DPPC-CHOL being least affected. The results imply inhibitory effects of mycolic acid toward lung surfactant lipids and could be a mechanism of lung surfactant dysfunction in pulmonary tuberculosis.  相似文献   

13.
We followed a comparative approach to investigate how heavy vacuum gas oil (HVGO) affects the expression of genes involved in biosurfactants biosynthesis and the composition of the rhamnolipid congeners in Pseudomonas sp. AK6U. HVGO stimulated biosurfactants production as indicated by the lower surface tension (26 mN/m) and higher yield (7.8 g/L) compared to a glucose culture (49.7 mN/m, 0.305 g/L). Quantitative real-time PCR showed that the biosurfactants production genes rhlA and rhlB were strongly upregulated in the HVGO culture during the early and late exponential growth phases. To the contrary, the rhamnose biosynthesis genes algC, rmlA and rmlC were downregulated in the HVGO culture. Genes of the quorum sensing systems which regulate biosurfactants biosynthesis exhibited a hierarchical expression profile. The lasI gene was strongly upregulated (20-fold) in the HVGO culture during the early log phase, whereas both rhlI and pqsE were upregulated during the late log phase. Rhamnolipid congener analysis using high-performance liquid chromatography-mass spectrometry revealed a much higher proportion (up to 69%) of the high-molecularweight homologue Rha–Rha–C10–C10 in the HVGO culture. The results shed light on the temporal and carbon source-mediated shifts in rhamonlipids’ composition and regulation of biosynthesis which can be potentially exploited to produce different rhamnolipid formulations tailored for specific applications.  相似文献   

14.
A novel cationic-nonionic bifunctional polymerizable surfactant (PEP) was prepared by the quaternarization of poly (ethylene oxide-propylene oxide) block polymers (PEO-PPO) having terminal tertiary amine group with chloropropene. Polymeric surfactant (PAM-g-PEP) was prepared by the copolymerization of acrylamide and PEP in water and the product was confirmed by FTIR. PAM-g-PEP has exhibit excellent surface and interfacial activity and its surface tension and interfacial tension at cmc are 40.13 mN/m and 11.69 mN/m, respectively. The influence of temperature on the micellar behavior of the PAM-g-PEP in water was studied by the dynamic laser scatting (DLS) and ultraviolet spectroscope. The results showed that PAM-g-PEP in water is thermo-associative. In diluted PAM-g-PEP solution, the Rh of the polymeric surfactant increases with the temperature due to the interpolymeric aggregations are formed. In the case of concentrated PAM-g-PEP solution, the light transmittance of PAM-g-PEP aqueous solution decreases with the increasing temperature, which is may be caused by the increase of the number of the interpolymeric PEP chain aggregates.   相似文献   

15.
The effect of the interaction between phospholipid monolayers and PEG-660-12-hydroxy stearate as a non-ionic surfactant on lipid emulsion stability in dynamic and static conditions was studied. The presence of PEG-660-12-hydroxy stearate molecules with phospholipid monolayers (static state) leads to a remarkable increase in the surface pressure (from 5 to 30 mN/m in the initial molecular area), whereas in the dynamic state, when the two emulsifiers are separated and each dissolved in one phase of the two emulsion phases, a sudden decrease in the surface pressures is observed. This indicates that PEG-660-12-hydroxy stearate molecules are intercalated between the phospholipid monolayers forming a molecular mixed film. At the same time, a part of the phospholipid monolayers interacts with the surfactant monomers to form a soluble or partially soluble association complex. This interpretation was also supported by interfacial tension measurements, where the interfacial tension in the dynamic state was lower than that in the static one. This indicates that in static conditions the phospholipids partially interact with PEG-660-12-hydroxy stearate resulting in a non-active association complex. Subsequently there is insufficient utilization of the available surfactants during the emulsification process. In contrast, in dynamic conditions both emulsifiers are available at the free surface from the beginning. This behaviour was substantiated by investigating the stability of emulsions which were prepared either by the static condition or the dynamic one during the autoclaving process. Received: 25 May 1998 Accepted in revised form: 18 September 1998  相似文献   

16.
Pulmonary surfactants stabilize the lung by way of reducing surface tension at the air-lung interface of the alveolus. 31P NMR, thin-layer chromatography, and electrospray ionization mass spectroscopy of bovine lipid extract surfactant (BLES) confirmed dipalmitoylphosphatidylcholine (DPPC) to be the major phospholipid species, with significant amounts of palmitoyl-oleoylphosphatidylcholine, palmitoyl-myristoylphosphatidylcholine, and palmitoyl-oleoylphosphatidylglycerol. BLES and DPPC spread at the air-water interface were studied through surface pressure area, fluorescence, and Brewster angle microscopy measurements. Langmuir-Blodgett films of monomolecular films, deposited on mica, were characterized by atomic force microscopy. BLES films displayed shape, size, and vertical height profiles distinct from those of DPPC alone. Calcium ions in the subphase altered BLES film domain structure. The addition of cholesterol (4 mol %) resulted in the destabilization of compressed BLES films at higher surface pressures (>40 mN m-1) and the formation of multilayered structures, apparently consisting of stacked monolayers. The studies suggested potential roles for individual surfactant lipid components in supramolecular arrangements, which could be the contributing factors in pulmonary surfactant to attain low surface tension at the air-water interface.  相似文献   

17.
It is believed that a lipid layer forms the outer layer of the pre-ocular tear film and this layer helps maintain tear film stability by lowering its surface tension. Proteins of the aqueous layer of the tear film (beneath the lipid layer) may also contribute to reducing surface tension by adsorbing to, or penetrating the lipid layer. The purpose of this study was to compare the penetration of lysozyme, a tear protein, into films of meibomian lipids and phospholipids held at different surface pressures to determine if lysozyme were part of the surface layer of the tear film. Films of meibomian lipids or phospholipids were spread onto the surface of a buffered aqueous subphase. Films were compressed to particular pressures and lysozyme was injected into the subphase. Changes in surface pressure were monitored to determine adsorption or penetration of lysozyme into the surface film. Lysozyme penetrated a meibomian lipid film at all pressures tested (max = 20 mN/m). It also penetrated phosphatidylglycerol, phosphatidylserine or phosphatidylethanolamine lipid films up to a pressure of 20 mN/m. It was not able to penetrate a phosphatidylcholine film at pressures ≥10 mN/m irrespective of the temperature being at 20 or 37 °C. However, it was able to penetrate it at very low pressures (<10 mN/m). Epifluorescence microscopy showed that the protein either adsorbs to or penetrates the lipid layer and the pattern of mixing depended upon the lipid at the surface. These results indicate that lysozyme is present at the surface of the tear film where it contributes to decreasing the surface tension by adsorbing and penetrating the meibomian lipids. Thus it helps to stabilize the tear film.  相似文献   

18.
In the present study, the cell attachment/spreading behaviour of L929 mouse fibroblasts on chitosan membranes was evaluated by using physico-chemical properties. For this purpose chitosan membranes were prepared and then photochemically modified with the cell adhesive peptide RGDS (Arg-Gly-Asp-Ser). The physico-chemical properties of unmodified (CHI) and RGDS-modified chitosan (CHI-RGDS) membranes were evaluated by calculating surface free energy (γsv) and interfacial free energy (γsw) values using captive bubble contact angle measurements and harmonic mean equation. The cell attachment experiments were performed both in 10% FBS containing and serum-free media with CHI and CHI-RGDS membranes. Eventually, it was not possible to predict a direct relationship between the change in physico-chemical properties and L929 cell attachment behaviour. The experimental results obtained from cell attachment agree with the theoretical prediction for the free energy of adhesion except for the cell attachment on CHI membrane in serum-free medium. Although a negative interfacial free energy of adhesion was calculated for CHI membrane in serum-free medium (ΔFadh = −2.19 ergs/cm2), the cell attachment was poor (70%) compared to CHI-RGDS (90%) and none of the cells were spread on CHI surface to gain a fibroblastic morphology. Negative energy of adhesion was calculated for CHI and CHI-RGDS in 10% FBS medium, in which 100% of cells were attached on the membranes correlating with the thermodynamic approach. It can be suggested that, adsorption of serum proteins strongly affected the cell attachment meanwhile the presence of biosignal RGDS molecules triggered the cell spreading in serum medium.  相似文献   

19.
The primary role of lung surfactant is to reduce surface tension at the air–liquid interface of alveoli during respiration. Axisymmetric drop shape analysis (ADSA) was used to study the effect of poly(ethylene glycol) (PEG) on the rate of surface film formation of a bovine lipid extract surfactant (BLES), a therapeutic lung surfactant preparation. PEG of molecular weights 3350; 8000; 10,000; 35,000; and 300,000 in combination with a BLES mixture of 0.5 mg/mL was studied. The adsorption rate of BLES alone at 0.5 mg/mL was much slower than that of a natural lung surfactant at the same concentration; more than 200 s are required to reach the equilibrium surface tension of 25 mJ/m2. PEG, while not surface active itself, enhances the adsorption of BLES to an extent depending on its concentration and molecular weight. These findings suggest that depletion attraction induced by higher molecular weight PEG (in the range of 8000 to 35,000) may be responsible for increasing the adsorption rate of BLES at low concentration. The results provide a basis for using PEG as an additive to BLES to reduce its required concentration in clinical treatment, thus reducing the cost for surfactant replacement therapy.  相似文献   

20.
Insertion profiles of antitubercular drugs isoniazid (INH), rifampicin (RFM) and ethambutol (ETH) into dipalmitoylphosphatidylcholine (DPPC) membrane models were evaluated by Langmuir monolayer technique. Maximum drug insertion into DPPC monolayer was observed with rifampicin with a surface pressure increase (Δπmax) in the range of 21–33 mN/m depending upon rifampicin concentration. Isoniazid had minimal insertion resulting in a lower Δπmax of about 2–3 mN/m, suggestive of minimal interactions between INH and DPPC. Ethambutol surface pressure increment on insertion resulted in an intermediate rise in the Δπmax (6–10 mN/m). Antitubercular drug combination in the ratio of 2 mM:0.7 mM:4.5 mM for INH:RFM:ETH, attained Δπmax between 25 and 33 mN/m. Insertion profiles similar to rifampicin were exhibited by the antitubercular drug mixture suggestive of predominant rifampicin insertion into the DPPC monolayer. The extent of drug insertion into the DPPC monolayer is suggestive of the drug penetration potential into biological membranes in vivo. Higher RFM Δπmax is suggestive of excellent cell membrane penetration, which explains broad reach of the drug to all the organs including the cerebrospinal fluid while lower Δπmax of INH suggests poor membrane penetration restricting the entry of the drug in different biological membranes. DPPC membrane destabilization was observed at higher antitubercular drug concentrations indicated by the negative slopes of the surface pressure–time curves. This may correlate with the dose related toxic effects observed in tuberculosis affected patients. Drug insertion studies offer a potential tool in understanding the pharmacotoxicological behavior of the various pharmacological agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号