首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rigid spherical macroporous adsorbent beads with surface hydroxyl groups were prepared by cross-linking of cellulose. These beads had diameter in the range 100-200 microm and a mean pore size of about 3 microm with about 60% pore volume. The matrix (bulk density approximately 1600 kg m(-3)) could be expanded into a stable bed and used for protein chromatography. Chromatographic runs were performed on a 10 mm diameter column under non-retaining and retaining conditions on the prepared matrix (called Celbeads) and performance of the runs was measured in terms of the height equivalent to a theoretical plate (HETP). The HETP curves in both packed and expanded bed modes followed profiles typical of macroporous adsorbents, i.e. increasing and levelling with velocity. Unimpaired performance of the matrix at increasing flow-rates permitted expanded bed elution of adsorbed solutes without loss of efficiency in terms of purification factor and product concentration. As a model system, Celbeads was used to purify lactate dehydrogenase from porcine muscle homogenate by dye-affinity chromatography. The prepared matrix provided about 100 theoretical plates per meter for the enzyme system at a linear flow velocity of 1.27 cm x min(-1) in an expanded bed elution mode, and gave enzyme yields of 100% with a purification factor of 31 using an optimized procedure. The adsorbent could be cleaned in place with 5 M urea and used repeatedly without loss of performance.  相似文献   

2.
For better understanding the influences of solid phase properties on the performance of the expanded bed, the expansion and hydrodynamic properties of cellulose-stainless steel powder composite matrix with a series of densities was investigated and analyzed in an expanded bed. Two kinds of matrix particle diameter fractions, the small one (60-125 microm) and the large (125-300 microm), were used in the present work. In general, the expansion factors decreased obviously with the increase of matrix density. A linear relation between the mean density of matrix and superficial velocity at expansion factor of 2.5 was found for same series of matrices. The Richardson-Zaki equation could correlate the bed expansion and operation fluid velocity for all matrices tested. The theoretical prediction of correlation parameters (the terminal settling velocity U(t) and expansion index n) was improved with the modification of equations in the literature. The residence time distributions were investigated to characterize the hydrodynamic property in expanded bed. Compared with three evaluation factors (the height equivalent of theoretical plate, Bo number and axial distribution coefficient D(ax)), the results indicated that D(ax) is the best parameter to analyze the bed stability of expanded bed under various operation conditions and matrix properties. In addition, it was found that fluid velocity is the most essential factor to influence the hydrodynamic properties in the bed. A linear relation between the D(ax) and superficial fluid velocity for all matrices tested was established.  相似文献   

3.
The fluidisation and dispersion properties of various agarose-based expanded bed matrices--small high density stainless steel cored prototypes and standard commercial types--were studied in 1-cm diameter expanded bed contactors in which fluid entering the column base is locally stirred. In all cases, fluidisation behaviour was poorly predicted from the Richardson-Zaki correlation, with experimentally determined values of the expansion index being considerably higher than the theoretical values. The resons for these discrepancies are discussed in detail and the validity of applying this widely used correlation for characterisation of expanded bed systems is questioned. Residence time distribution studies using acetone tracers, demonstrated that in comparison to existing commercial supports, the small pellicular prototype materials generally possessed far superior hydrodynamic properties, which augurs well for their future employment in expanded bed chromatographic separations.  相似文献   

4.
Novel dense composite adsorbents for expanded bed adsorption of protein have been fabricated by coating 4% agarose gel onto Nd-Fe-B alloy powder by a water-in-oil emulsification method. Two composite matrices, namely Nd-Fe-B alloy-densified agarose (NFBA) gels with different size distributions and densities, NFBA-S (50-165 microm, 1.88 g/ml) and NFBA-L (140-300 microm, 2.04 g/ml), were produced. Lysozyme was used as a model protein to test the adsorption capacity and kinetics for the NFBA gels modified by Cibacron blue 3GA (CB-NFBA gels). Liquid-phase dispersion behavior in the expanded beds was examined by measurements of residence time distributions, and compared with that of Streamline SP (Amersham-Pharmacia Biotech, Sweden). The dependence of axial mixing in the expanded beds on flow velocity, bed expansion degree. settled bed height, and viscosity of liquid phase was investigated. Breakthrough curves of lysozyme in the expanded beds of the CB-NFBA gels were also examined. The dynamic binding capacity at 5% breakthrough was 23.3 mg/ml matrix for the CB-NFBA-S gels, and 16.7 mg/ml matrix for the CB-NFBA-L, at a flow velocity of 220 cm/h. The results indicate that the NFBA gels are promising for expanded bed adsorption of proteins.  相似文献   

5.
To find a suitable matrix for immobilization of microbial cells, synthetic and natural polymers were screened. As a result,kappa-carrageenan,iota-carrageenan, furcellaran, sodium alginate, ethyl succinylated cellulose, succinylated zein, and 2-methyl-5-vinyl-pyridine-methylacrylate-methacrylic acid copolymer were studied. These polymers were induced to gel under mild conditions.Streptomyces phaeochromogenes cells having glucose isomerase activity were successfully immobilized in these polymer matrices. If a gelinducing reagent were added to a substrate solution, these gel matrices could be stabilized. The microbial cells did not leak out from the gel lattice. When these immobilized cells were treated with hardening reagents such as glutaraldehyde or tannins, the gel matrices were strengthened, and the glucose isomerase activity became stable for a long period even in the absence of gel-inducing reagents. Among these polymer matrices tested,kappa -carrageenan was most suitable for immobilization of microbial cells.  相似文献   

6.
I. M. Mutton 《Chromatographia》1998,47(5-6):291-298
Summary Rapid analyses were performed using reversed-phase liquid chromatography with short (20–100 mm) columns swept by fast yet shallow gradients, and the results compared with those obtained with 150 mm columns and slow gradients. The resolution losses incurred with shorter columns were minimised by employing elevated flow rates, to ensure that comparable mean retention factors were experienced by individual analytes during gradients run on different columns. This conserves gradient steepness. High quality performance was obtained with turn-around times of 5–10 minutes. An overall 5-fold enhancement in the rate of information generation was obtained. The relevance of instrumental parameters and of column and packing dimensions, upon the potential for improved performance is discussed. Some implications for the rapidly developing technique of capillary electrochromatography are briefly indicated.  相似文献   

7.
Preparative chromatography of xylanase using expanded bed adsorption   总被引:2,自引:0,他引:2  
Expanded bed adsorption was used to purify a marketable xylanase often used in the kraft pulp bleaching process. Experiments in packed and expanded beds were carried out mainly to study the adsorption of xylanase on to a cationic adsorbent (Streamline SP) in the presence of cells. In order to study the presence of cells, a Bacillus pumilus mass (5% wet mass) was mixed with the enzyme extract and submitted to an expanded bed adsorption system. One xylanase was purified to homogeneity in the packed bed. However, the 5% cell content hampered purification.  相似文献   

8.
New adsorbents Q HyperZ and CM HyperZ composed of hydrogel-filled porous zirconium oxide particles were evaluated for expanded bed adsorption applications in the present work. The HyperZ adsorbents have wet density of 3.16 g ml(-1), particle size of 44.5-100.8 microm and average sphere diameter of 67 microm. The bed expansion as the function of flow velocity and fluid viscosity was measured and correlated with Richardson-Zaki equation. The suitable expansion factor was considered less than 2.5, while the corresponding flow velocity was about 450 cmh(-1). Liquid mixing in the bed was determined to evaluate the stability of expanded bed. The Bodenstein numbers tested were higher than 40 and the axial mixing coefficients (D(ax)) were between 0.5 and 9.7x10(-6)m(2)s(-1), which demonstrated that a stable expanded bed could be formed under suitable operation conditions. Bovine serum albumin (BSA) and lysozyme were used as model proteins to estimate the adsorption capacities of Q and CM HyperZ, respectively. The maximum equilibrium adsorption of Q and CM HyperZ could reach 45.7 and 27.2 mg g(-1) drained adsorbents, respectively. It was found that yeast cells had little influence on the adsorption capacities of the two adsorbents tested. The dynamic adsorption capacity of BSA at 10% breakthrough with Q HyperZ was 35.9 mg g(-1) drained adsorbent at flow velocity of 100 cm h(-1) for packed bed adsorption. The values for expanded bed adsorption were 34.4 mg g(-1) drained adsorbent at flow velocity of 200 cm h(-1), 33.6 mg g(-1) drained adsorbent at 300 cm h(-1) and 31.7 mg g(-1) drained adsorbent 400 cm h(-1). The results demonstrated that Q HyperZ and CM HyperZ are suitable for expanded bed adsorption of biomolecules.  相似文献   

9.
10.
Changes in bed expansion are frequently encountered during an expanded bed adsorption, such as during the initial bed expansion, feed loading and washing processes. We have here studied the changes of local particle size distribution and bed voidage of an expanded bed in the initial bed expansion process as well as those during the changes in mobile phase viscosity, which imitated feed loading and column washing processes. Using a glass column modified with three side sampling ports and Streamline AC as the solid phase, experimental measurements on a series of operation moments during the transient processes were carried out by sampling the particles from within the column at different axial positions. In the initial bed expansion process, the gradual formation of an axial classification from a settled bed to a stable expanded bed was first displayed. By changing the mobile phase from water to 10% (w/w) glycerol solution or vice versa, the variations in both the particle size distribution and bed voidage corresponding to the increase or decrease of the bed height caused by the changes of the mobile phase viscosity were examined as well. The transient changes of the local particle size distribution and bed voidage first occurred in the bed bottom and then progressed from bottom to top along the axial direction. However, the changes of bed voidage at different axial positions were not unidirectional. That is, by changing the mobile phase to the high-viscosity glycerol solution, a constant increase of the bed voidage was observed in the bed bottom, while a distinct decrease of the bed voidage before its increase was involved at the middle and top positions. This is ascribed to the compression effect caused by the upward movement of the lower part particles.  相似文献   

11.
The effects of the sample flow-rate and bulk and bulk sample composition on the breakthrough behaviour of H2 in small sorption traps were studied. The information is required for the bulk thermal properties of the sample affect the temperature inside the cooled traps and therefore also the breakthrough volume. It was also found that the brakthrough volume, measured downstream of a packed trap, can qctually increase with volume flow rate.  相似文献   

12.
DNA-induced aggregation and contraction of expanded bed adsorption chromatography beds have been examined using strong anion exchanger Q HyperZ and calf thymus DNA in buffers containing added NaCl. Two batches of adsorbent with different ionic capacities were used allowing the effects of different ligand densities to be examined. Very high dynamic binding capacities at 10% breakthrough were found in the absence of added salt. However, the highest binding capacities ( approximately 10 and approximately 19mgDNAml(-1) gel) were found in buffers containing added salt at concentrations of either 0.25 or 0.35M, for the low and high ligand density adsorbents, respectively. Bed contraction was observed, but did not correlate with dynamic binding capacity or with the amount of DNA loaded. No differences in bed contraction were seen by varying the concentration of DNA loaded in the range of 20-80mugml(-1) even though the dynamic binding capacity was reduced as DNA concentration was increased. The extent of bed contraction during DNA loading was found to be a function of added salt concentration and ligand density of the adsorbent. The results imply that ligand density significantly affects the salt tolerance of anion exchangers when binding DNA. However, more importantly, with the adsorbents examined here, attempts to reduce bed aggregation by feedstock conditioning with added salt may increase DNA binding leading to a reduction in expanded bed adsorption performance compromising protein capture in real feedstocks.  相似文献   

13.
A mathematical model for an expanded bed column was developed to predict breakthrough curves for inulinase adsorption on Streamline SP ion-exchange adsorbent, using a crude fermentative broth with cells as the feedstock. The kinetics and mass transfer parameters were estimated using the PSO (particle swarm optimization) heuristic algorithm. The parameters were estimated for each expansion degree (ED) using three breakthrough curves at initial inulinase concentrations of 65.6 U mL−1. In sequence, the model parameters for an ED of 2.5 were validated using the breakthrough curve at an initial concentration of 114.4 U mL−1. The applicability of the validated model in process optimization was investigated, using the model as a process simulator and experimental design methodology to optimize the column and process efficiencies. The results demonstrated the usefulness of this methodology for expanded bed adsorption processes.  相似文献   

14.
Anaerobic treatment of low-strength brewery wastewater, with influent total chemical oxygen demand (COD) (CODin) concentrations ranging from 550 to 825 mg/L, was investigated in a pilot-scale 225.5-L expanded granular sludge bed (EGSB) reactor. In an experiment in which the temperature was lowered stepwise from 30 to 12 degrees C, the COD removal efficiency decreased from 73 to 35%, at organic loading rates (OLR) of 11-16.5 g COD/L/d. The applied hydraulic retention time (HRT) and liquid upflow velocity (Vup) were 1.2 h and 5.8 m/h, respectively. Under these conditions, the acidified fraction of the CODin varied from 45 to 90%. In addition to the expected drop in reactor performance, problems with sludge retention were also observed. In a subsequent experiment set at 20 degrees C, COD removal efficiencies exceeding 80% were obtained at an OLR up to 12.6 g COD/L/d, with CODin between 630 and 715 mg/L. The values of HRT and Vup applied were 2.1-1.2 h, and 4.4-7.2 m/h, respectively. The acidified fraction of the CODin was above 90%, but sludge washout was not significant. These results indicate that the EGSB potentials can be further explored for the anaerobic treatment of low-strength brewery wastewater, even at lower temperatures.  相似文献   

15.
16.
Needle trap devices (NTDs) are improving in simplicity and usefulness for sampling volatile organic compounds (VOCs) since their first introduction in early 2000s. Three different sample transfer methods have been reported for NTDs to date. All methods use thermal desorption and simultaneously provide desorptive flow to transfer desorbed VOCs into a GC separation column. For NTDs having 'side holes', GC carrier gas enters a 'side hole' and passes through sorbent particles to carry desorbed VOCs, while for NTD not having a 'side hole', clean air as desorptive flow can be provided through a needle head by a air tight syringe to sweep out desorbed VOCs or water vapor has been reported recently to be used as desorptive flow. We report here a new simple sample transfer technique for NTDs, in which no side holes and an external desorptive flow are required. When an NTD enriched by a mixture of benzene, toluene, ethylbenzene, and xylene (BTEX) or n-alkane mixture (C6-C15) is exposed to the hot zone of GC injector, the expanding air above the packed sorbent transfers the desorbed compounds from the sorbent to the GC column. This internal air expansion results in clean and sharp desorption profiles for BTEX and n-alkane mixture with no carryover. The effect of desorption temperature, desorption time, and overhead volumes was studied. Decane having vapor pressure of approximately 1 Torr at 20 degrees C showed approximately 1% carryover at the moderate thermal desorption condition (0.5 min at 250 degrees C).  相似文献   

17.
Biomass adhesion onto an adsorbent matrix or "interaction" as well as biological particle co-adhesion or "aggregation" can severely affect the overall performance of many direct-contact methods for downstream processing of bioproducts. Studies to quantitatively describe this biomass-adsorbent interaction were developed utilizing surface energetics. An indirect thermodynamic approach via contact angle and zeta potential measurements was utilized. Intact yeast cells, yeast homogenates, and disrupted bacterial paste were employed as model system. Various surfaces that are relevant to biochemical and environmental applications were characterized. The extended Derjaguin, Landau, Verwey, Overbeek (XDLVO) theory was found to appropriately predict biomass adhesion behaviour. It was observed that cell attachment onto anion-exchange supports is promoted by strong and close interaction within a secondary energy minimum followed by moderate multilayer cell aggregation. On the other hand, cell interaction with cation-exchange materials can take place within a reversible secondary energy minimum and at longer separation distance. The influence of particle charge and size, as well as the influence of the nature of the material under study were summarized in the form of energy vs. distance profiles. These investigations lead to many process-related conclusions: (a) process buffer conductivity windows can be recommended for anion-exchange chromatography (AEX) vs. cation-exchange chromatography (CEX) systems, (b) increased hydrodynamic shear is required to prevent biomass attachment onto AEX as compared to CEX, and (c) aggregation phenomena is a function of contact time and biomass concentration. Understanding biomass-adsorbent interaction at the particle (local) level is opening the pave for optimized operation of expanded bed adsorption methods at the process (macro) scale. A universal methodological approach is presented to guide both process and material design.  相似文献   

18.
A novel prototype polymer-coated adsorbent (PCA) has been developed for the effective expanded bed recovery of protein products from particulate feedstocks. The adsorbents were manufactured using the three-phase emulsification process by which the selected core phases (anion- and cation-exchangers and a custom-assembled pseudo-affinity adsorbent) were coated by an agarose gel. This new non-stick exterior coating acts as a sieve reducing the non-specific binding of cell and cell debris without diminution of selective capture of target protein from complex feedstocks such as whole microbial broths and cell disruptates. The new coated adsorbents were subjected to physical and hydrodynamical comparison with the performance of their uncoated adsorbents. Hydrodynamic characteristics (e.g. axial dispersion coefficient (D(axl)) and Bodenstein number (B(o))) of PCA demonstrated a marked robustness in the face of biomass loading disrupted yeast cells. In addition, each adsorbent was compared with its uncoated native form during the expanded bed adsorption of one of two intracellular proteins (i.e. glyceraldehyde 3-phosphate dehydrogenase and cytochrome c) from a 20% (ww/v) yeast disruptate. The performance parameters of efficiency of washing, purification factor, turbidity of the eluted product and protein recovery in all analysed cases were favourable to the coated materials. In particular, exploiting PCA reduced significantly undesirable adsorption of cells without significant loss of binding capacity for the target product. The generic application of such adsorbents and their potential for the recovery of target products from complex feedstock is discussed, whilst other application such as the subtractive purification of nanoparticles were detailed in our previous publication.  相似文献   

19.
Analyte transfer from the matrix in a thin layer distillation (TLD) cell and its subsequent measurement were investigated in a flow injection configuration. We designed the cell such that the donor and acceptor streams flowed in parallel channels separated by a thin dividing wall. The matrix transfer process involved room-temperature distillation of the analyte into the headspace of the TLD cell and its subsequent condensation/uptake by a concurrently flowing acceptor stream. There are no membranes; hence there are no membrane-related problems. The TLD system design was optimized with respect to its dimensions and operational parameters. Throughput and sensitivity were compared with a conventional pervaporation flow injection (PFI) system for ammonia and five different amines. For the higher molecular mass amines, the TLD approach provided comparable or superior performance. The TLD technique should be an attractive approach for online analysis of volatile chemical species in ‘dirty’ samples, especially for volatile analytes of higher molecular mass.  相似文献   

20.
A graphene-based nanostructure with expanded Li(+) transport channels is reported, which is characterized by high capacity and excellent rate performance as an anode material for Li-ion batteries. The expanded structure is obtained by employing linear polymers as the spacers in the stacking process of graphene nanosheets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号