首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high-performance liquid chromatographic method for the analysis of 1-ethyl-1,4-dihydro-4-oxo-1,8-naphthyridine-3,7-dicarboxylic acid (I) in plasma and urine is described. A statistical evaluation of the assay technique has shown acceptable accuracy and precision at concentrations as high as 2.0 microgram/ml of plasma or 29.0 microgram/ml of urine for samples augmented with 1. As little as 0.08 microgram/ml of I in plasma or 0.42 microgram/ml of I in urine were quantitatively determined. The mean relative error for the assay of unknown concentrations of I in plasma and urine was +/- 8% and +/- 3%, respectively. This method was used for the analysis of I in the plasma and urine of rhesus monkeys following oral administration of 200 mg/kg of nalidixic acid.  相似文献   

2.
A rapid, sensitive and robust assay procedure using liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) for the determination of famotidine in human plasma and urine is described. Famotidine and the internal standard were isolated from plasma samples by cation-exchange solid-phase extraction with benzenesulfonic acid (SCX) cartridges. The urine assay used direct injection of a diluted urine sample. The chromatographic separation was accomplished by using a BDS Hypersil silica column with a mobile phase of acetonitrile-water containing trifluoroacetic acid. The MS/MS detection of the analytes was set in the positive ionization mode using electrospray ionization for sample introduction. The analyte and internal standard precursor-product ion combinations were monitored in the multiple-reaction monitoring mode. Assay calibration curves were linear in the concentration range 0.5--500 ng ml(-1) and 0.05--50 microg ml(-1) in plasma and urine, respectively. For the plasma assay, a 100 microl sample aliquot was subjected to extraction. To perform the urine assay, a 50 microl sample aliquot was used. The intra-day relative standard deviations at all concentration levels were <10%. The inter-day consistency was assessed by running quality control samples during each daily run. The limit of quantification was 0.5 ng ml(-1) in plasma and 0.05 microg ml(-1) in urine. The methods were utilized to support clinical pharmacokinetic studies in infants aged 0-12 months.  相似文献   

3.
A stereoselective liquid chromatographic method to determine the enantiomers of ornidazole in human plasma and urine has been developed and validated. After addition of the internal standard (naproxen), samples were acidified and extracted with diethyl ether. The separation was performed on a Chiralcel OB-H column, using hexane-ethanol- glacial acetic acid (94:6:0.08, v/v) as the mobile phase. The method was validated for specificity, linearity, sensitivity, precision, accuracy and stability. For each enantiomer of ornidazole, linear calibration curves were obtained over the concentration range of 0.16–20 μg mL?1 in plasma and 0.32–20 μg mL?1 in urine. For both enantiomers of ornidazole in plasma and urine, the coefficient of variation for precision were consistently less than 12% and accuracy were within ±14% in terms of relative error. Application of the method to a preliminary pharmacokinetic study showed that this validated method was qualified for the direct determination of ornidazole enantiomers in human plasma and urine.  相似文献   

4.
Wang  Huan  Chen  Yan  Zhou  Jia  Ma  Chen  Chen  Yuancheng  Liu  Xiaoquan 《Chromatographia》2008,67(11):875-881

A stereoselective liquid chromatographic method to determine the enantiomers of ornidazole in human plasma and urine has been developed and validated. After addition of the internal standard (naproxen), samples were acidified and extracted with diethyl ether. The separation was performed on a Chiralcel OB-H column, using hexane-ethanol- glacial acetic acid (94:6:0.08, v/v) as the mobile phase. The method was validated for specificity, linearity, sensitivity, precision, accuracy and stability. For each enantiomer of ornidazole, linear calibration curves were obtained over the concentration range of 0.16–20 μg mL−1 in plasma and 0.32–20 μg mL−1 in urine. For both enantiomers of ornidazole in plasma and urine, the coefficient of variation for precision were consistently less than 12% and accuracy were within ±14% in terms of relative error. Application of the method to a preliminary pharmacokinetic study showed that this validated method was qualified for the direct determination of ornidazole enantiomers in human plasma and urine.

  相似文献   

5.
A sensitive, selective, and rapid high-performance liquid chromatographic procedure was developed for the determination of isoxicam in human plasma and urine. Acidified plasma or urine were extracted with toluene. Portions of the organic extract were evaporated to dryness, the residue dissolved in tetrahydrofuran (plasma) or acetonitrile (urine) and chromatographed on a mu Bondapak C18 column preceded by a 4-5 cm X 2 mm I.D. column packed with Corasil C18. Quantitation was obtained by UV spectrometry at 320 nm. Linearity in plasma ranged from 0.2 to 10 micrograms/ml. Recoveries from plasma samples seeded with 1.8, 4 and 8 micrograms/ml isoxicam were 1.86 +/- 0.077, 4.10 +/- 0.107 and 8.43 +/- 0.154 micrograms/ml with relative standard deviations of 3.3%, 2.5% and 5.4%, respectively. The linearity in urine ranged from 0.125 to 2 micrograms/ml. The precision of the method was 3.3-9.0% relative standard deviation over the linear range.  相似文献   

6.
《Analytical letters》2012,45(1):68-83
Abstract

A simple and reliable high-performance liquid chromatographic (HPLC) method was developed for the determination of belotecan in the plasma, urine, and bile samples of rats. Belotecan was analyzed with HPLC using a C18 column with fluorescence detector. A mixture of acetonitrile–0.1 M potassium phosphate buffer at pH 2.4 (25:75, v/v) and 0.2% trifluoroacetic acid was used as the mobile phase. The lower limits of quantitation (LOQ) were 5 ng mL?1 for the plasma and 5 µg mL?1 for the urine and bile samples. The method has been readily applied for the routine pharmacokinetic study of belotecan in small laboratory animals.  相似文献   

7.
A simple and rapid high-performance liquid chromatographic method for the determination of proquazone (PQZ) and its major metabolite, m-hydroxyproquazone, in spiked human plasma and urine was developed. Plasma samples were purified using acetonitrile as a protein precipitant, while urine samples were diluted only with the mobile phase and filtered prior to injection. Samples containing the parent compounds and glafenine (internal standard) were eluted from a reversed-phase C8 column using acetonitrile-0.025 M sodium acetate (60 + 40) adjusted to pH 5 as the mobile phase and detected at 234 nm. Peak area ratios of the analytes versus internal standard were used for calibration. The mean recoveries from plasma and urine samples spiked with PQZ and its m-hydroxy metabolite ranged from 97.87 to 103.88%. The relative standard deviation for the within- and between-day analyses were < 4%. The proposed method was applied for the assay of PQZ in laboratory-made tablets.  相似文献   

8.
A high-performance liquid chromatographic method with column switching has been developed for the simultaneous determination of cefamandole and cefamandole nafate in plasma and urine. The plasma and urine samples were injected onto a precolumn packed with Corasil RP C18 (37-50 microns) after simple dilution with an internal standard solution in 0.05 M phosphoric acid. Polar plasma and urine components were washed out using 0.05 M phosphoric acid. After valve switching, the concentrated drugs were desorbed in back-flush mode and separated by a reversed-phase C8 column with methanol-5 mM tetrabutylammonium bromide (45:55, v/v) as the mobile phase. The method showed excellent precision with good sensitivity and speed, and a detection limit of 0.5 microgram/ml. The total analysis time per sample was less than 30 min, and the mean coefficients of variation for intra- and inter-assay were both less than 4.9%. The method has been successfully applied to plasma and urine samples for human volunteers after intravenous injection of cefamandole nafate.  相似文献   

9.
A high-performance liquid chromatographic method for the measurement of bumetanide in plasma and urine is described. Following precipitation of proteins with acetonitrile, bumetanide was extracted from plasma or urine on a 1-ml bonded-phase C18 column and eluted with acetonitrile. Piretanide dissolved in methanol was used as the internal standard. A C18 Radial Pak column and fluorescence detection (excitation wavelength 228 nm; emission wavelength 418 nm) were used. The mobile phase consisted of methanol-water-glacial acetic acid (66:34:1, v/v) delivered isocratically at a flow-rate of 1.2 ml/min. The lower limit of detection for this method was 5 ng/ml using 0.2 ml of plasma or urine. Nafcillin, but not other semi-synthetic penicillins, was the only commonly used drug that interfered with this assay. No interference from endogenous compounds was detected. For plasma, the inter-assay coefficients of variation of the method were 7.6 and 4.4% for samples containing 10 and 250 ng/ml bumetanide, respectively. The inter-assay coefficients of variation for urine samples containing 10 and 2000 ng/ml were 8.1 and 5.7%, respectively. The calibration curve was linear over the range 5-2000 ng/ml.  相似文献   

10.
张秀尧  蔡欣欣  张晓艺 《色谱》2014,32(6):586-590
建立了超高效液相色谱-三重四极杆质谱联用方法,检测血浆和尿液中的α-龙葵碱、α-卡茄碱和茄啶。样品经2%(v/v,下同)甲酸水溶液等量稀释,再经混合型阳离子交换固相萃取柱(MCX SPE)净化,以0.1%甲酸乙腈溶液和含0.05%甲酸的5 mmol/L乙酸铵水溶液作为流动相进行梯度洗脱,在UPLC BEH C18色谱柱上实现分离,正离子电喷雾串联质谱多反应监测(ESI-MS/MS MRM)方式检测,基质匹配外标法定量。一次进样分析时间为5.5min。血浆和尿液中3种待测物的线性范围均为0.3~100 ng/mL,相关系数为0.997~0.999;样品的检出限为0.1 ng/mL,定量限为0.3 ng/mL;血浆和尿液中的平均加标回收率分别为82%~112%和96%~114%,相对标准偏差为4.0%~16%和2.7%~17%(n=6)。方法简单、准确、灵敏,适用于马铃薯中毒检测。  相似文献   

11.
张晓艺  张秀尧  蔡欣欣  李瑞芬 《色谱》2018,36(10):979-984
建立了离子色谱-三重四极杆质谱测定血浆和尿液样品中氟乙酸(MFA)的方法。血浆样品经高氯酸超声提取,尿液样品经高氯酸酸化,血浆和尿液提取液在pH 0.5~1.0条件下用叔丁基甲醚(MTBE)萃取,萃取液经氮吹浓缩后溶于0.1%(v/v)氨水溶液。以Ionpac AS 19型阴离子色谱柱为分析柱,在线自动产生的氢氧化钾作为淋洗液进行梯度分离,柱流出液经阴离子抑制器抑制后进入质谱系统。采用电喷雾电离源,在负离子、多离子监测(MRM)模式下检测,13C2-氟乙酸稳定同位素内标法定量。血浆和尿液样品中氟乙酸的平均加标回收率为96.2%~120%,相对标准偏差为1.1%~13.1%(n=6),方法的检出限(S/N=3)分别为0.03 μg/L和0.1 μg/L。该法简单、灵敏、准确,可用于生物样品中氟乙酸的检测。  相似文献   

12.
A rapid gas chromatographic method is described for the determination of chlorophenoxyisobutyric acid (the active metabolite of clofibrate) in plasma and urine. The assay involves an extraction into toluene and back-extraction of the chlorophenoxyisobutyric acid and the internal standard (2-naphthoic acid) into the methylating reagent (trimethylanilinium hydroxide). Concentrations of 1 mug/ml in plasma and urine can easily be measured; the precision of the method is 3.3 +/- 0.7% for plasma and 2.7 +/- 0.4% for urine. There is no interference from endogenous compounds or from drugs commonly prescribed together with clofibrate.  相似文献   

13.
A liquid chromatographic (LC) method was developed for the determination of allantoin, uric acid, and indoxyl sulfate in mammalian urine contaminated packaging material including paper bagging, corrugated cardboard, grayboard, and burlap bagging. The procedure involves solvent extraction and isolation of the 3 analytes by reversed-phase LC with ultraviolet detection at 225 nm for allantoin and 286 nm for uric acid and indoxyl sulfate. The composition of authentic mammalian urine such as mouse, rat, cat, dog, and human were also determined with regard to the 3 compounds of interest. A linear concentration range of 0.11-20.4, 0.02-10.0, and 0.04-30.0 microg/mL was obtained for allantoin, uric acid, and indoxyl sulfate, respectively. Limits of detection (LOD) and quantitation (LOQ) were 0.0104 and 0.0345 microg/mL for allantoin; 0.0018 and 0.0060 microg/mL for uric acid; and 0.0049 and 0.0165 microg/mL for indoxyl sulfate, respectively. Interday relative standard deviation values for a mixture of standard allantoin, uric acid, and indoxyl sulfate (n = 5) were 0.97, 0.80, and 0.94%, respectively. Analyte composition for 5 types of authentic mammalian urine varied from 0.19-6.88 mg/mL allantoin; 0.08-0.57 mg/mL uric acid; and 0.03-0.78 mg/mL indoxyl sulfate. Analyte content for 8 samples including 2 samples each for paper, cardboard, grayboard, and burlap bagging each contaminated with mouse or rat urine ranged from 相似文献   

14.
Inulin and p-aminohippuric acid (PAH) clearances are used for the estimation of glomerular filtration rate (GFR) and effective renal plasma flow (ERPF). A simple and rapid high-performance liquid chromatography (HPLC) method with UV detection is described for the simultaneous determination of inulin and PAH in the same chromatogram in the plasma and urine of humans. Plasma and urine samples were hydrolyzed with perchloric acid (0.7%) in boiling water. The mobile phase consisted of 0.01 M potassium dihydrogenphosphate with 0.02 M tetramethylammonium chloride and o-phosphoric acid (pH 3)-acetonitrile (94:6, v/v), pumped at a rate of 1.2 ml min-1 on a C8 reversed-phase column. Tannic acid was used as the internal standard and UV detection at 285 nm was employed. The calibration curves were linear over the concentration range of 12.5-100 mg l-1 for inulin and 6.25-50 mg l-1 for PAH with determination coefficients greater than 0.997. The method is accurate (bias < 13%) and reproducible (intra- and inter-day relative standard deviation less than 11%), with a limit of quantitation of 12.5 mg l-1 and 6.25 mg l-1 for inulin and PAH, respectively. Analytical recoveries from urine and plasma were ranged from 81 to 108% for both compounds. This fully validated method, which allows the simultaneous determination of inulin and PAH clearances, is simple, rapid (total run time < 10 min) and requires only a 200 microliters plasma or urine sample.  相似文献   

15.
Abstract

A high-performance liquid chromatographic method for the analyses of ciprofloxacin (BAY o 9867) (1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinoline carboxylic acid hydrochloride) in human serum, plasma and urine samples is described. Diluted serum, plasma, and urine samples are injected onto a RP-18 column without prior extraction or clean-up procedure. Ciprofloxacin is separated from the ballast by an eluent consisting of an 0.025M H3PO4 solution adjusted to pH=3 with tetrabutylammonium hydroxide and acetonitrile.

Ciprofloxacin is detected fluorimetrically giving a detection limit of 8ng/ml in plasma and serum and of 50ng/ml in urine. A statistical evaluation of the assay showed acceptable accuracy and precision for 10 to 500ng of BAY o 9867 per ml in serum and plasma and for 50ng to 600ng of BAY o 9867 per ml of diluted urine specimens. This method was used to monitor the concentrations of BAY o 9867 in serum, plasma and urine of volunteers after oral administration of ciprofloxacin.  相似文献   

16.
A rapid, simple and sensitive column-switching high-performance liquid chromatographic procedure for the determination of captopril in plasma and urine had been developed. p-Bromophenacyl bromide was used as a derivatizing reagent to react with captopril to form a product that showed ultraviolet-absorbing properties. For plasma samples the protein was removed with 6% perchloric acid before injection. The urine samples were directly injected into the chromatograph. The column-switching system was equipped with a pre-column (5 cm x 0.5 cm I.D.) packed with muBondapak C18 (37-50 microns) and an analytical column (15 cm x 0.5 cm I.D.) packed with YWG-C18, 10 microns. Impurities were washed from the pre-column with 0.2% acetic acid and the retained substances were eluted into the analytical column with acetonitrile-water-acetic acid (35:65:0.4, v/v). Captopril was detected at 260 nm. The calibration curve was linear in the range 20-1000 ng/ml for plasma and 10-200 micrograms/ml for urine. The recoveries averaged 103.2 and 99.5% for plasma and urine, respectively. The coefficients of variation were all less than 10%.  相似文献   

17.
Immunoassays are currently not available in commercial kits for the quantification of valproic acid, vigabatrin, pregabalin, and gabapentin, which also cannot suffer the limitations of interferences of substances with similar structures. Chromatography is a good alternative to immunoassay. In this study, a simple and robust non-derivatization gas chromatography-mass spectrometry method for simultaneous determination of the above four drugs in human plasma was developed and validated for therapeutic drug monitoring purposes. This method employed benzoic acid as the internal standard with hydrochloric acid for plasma acidification and ACN for precipitate protein. The supernatant was directly injected into gas chromatography-mass spectrometry for analysis. Good linearity was obtained with linear correlation coefficients of the four analytes of 0.9988–0.9996. Extraction recoveries of valproic acid, vigabatrin, pregabalin, and gabapentin were respectively in the ranges of 91.3%–94.5%, 90.0%–90.9%, 90.0%–92.1%, and 88.0%–92.2% with the relative standard deviation values less than 12.6%. Intra- and inter-batch precision and accuracy, and stability assays were all acceptable. Taken together, the novel method developed in this study provided easy plasma pretreatment, good extraction yield, and high chromatographic resolution, which has been successfully validated through the quantification of valproic acid in the plasma of 46 patients with epilepsy.  相似文献   

18.
Omeprazole (OPZ) is a proton pump inhibitor in gastric parietal cells. A reversed-phase high-performance liquid chromatographic method was developed that enables concentrations of OPZ and its major metabolites, omeprazole sulphone (OPZ-SFN) and hydroxy-omeprazole (H-OPZ), to be determined simultaneously in plasma and that of H-OPZ in urine. To prevent decomposition of OPZ, all the processes (extraction, injection and elution) were carried out under alkaline conditions. Recoveries of the analytes and internal standard were greater than 93.1%. The intra- and inter-assay coefficients of variation were less than 9.1 and 6.4% for plasma samples and less than 2.9 and 3.9% for urine samples, respectively. The minimum determinable concentration (relative standard deviation 10-15%) was 10 ng/ml for all analytes in plasma and H-OPZ in urine samples. The clinical applicability of this assay method was evaluated by determining plasma concentration-and urinary excretion-time courses of the respective analyte(s) in four healthy volunteers after an oral dose of 20 mg of OPZ. The present assay is considered to be simple, precise and accurate and suitable for the study of the kinetic disposition and metabolism of OPZ, which is an extensively metabolized drug in the human liver.  相似文献   

19.
Vigabatrin is widely used as an anticonvulsant in the treatment of seizures. Vigabatrin is usually supplied as racemate in formulation, but only the (S)-(+)-enantiomer of vigabatrin is pharmacologically active. A simple and sensitive liquid chromatographic method is described for the separation and quantification of vigabatrin enantiomers. The method is based on derivatizing racemic vigabatrin with a fluorescent chiral reagent (naproxen acyl chloride). The resulting diastereomeric derivatives are highly responsive to a fluorimetric detector (lambda(ex)=230 nm, lambda(em)=350 nm). The lower quantitation limit of the method is attainable at 25 nM for (S)-(+)-vigabatrin or (R)-(-)-vigabatrin with a detection limit of about 2.5 nM (S/N=3 with 10 microl injected). Application of the method to the analysis of vigabatrin in serum of dosed patients proved feasible.  相似文献   

20.
A sensitive reversed-phase high-performance liquid chromatographic (HPLC) technique with ultraviolet detection has been developed to determine the concentration of BRB-I-28 (I), a novel antiarrhythmic agent, in dog plasma and urine. The mobile phase was acetonitrile-methanol-37.5 mM phosphate buffer, pH 6.8-triethylamine (50:50:75:0.1, v/v). The compound was extracted from dog plasma and urine with chloroform after alkalinization with sodium hydroxide. The extraction recovery was 83% from plasma and 84% from urine. Good linearity (r > 0.996) was observed throughout the ranges 0.1-12.0 micrograms/ml (plasma) and 0.1-8.0 micrograms/ml (urine). Intra- and inter-assay variabilities were less than 4%. The lower limit of quantitation was 0.08 microgram/ml in either plasma or urine. HPLC analysis of plasma and urine samples from a dog treated with I has demonstrated that the method was accurate and reproducible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号