首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By analysis of a large body of available data, crystal field parameters have been obtained for compounds in the series RERh4B4 (RE = rare-earth). These parameters have then been used to calculate properties related to the electronic and magnetic properties of such compounds, and it is shown that a substantial unification of current information is obtained for properties including bulk magnetization (polycrystalline and single crystal), magnetic susceptibility, magnetic anisotropy, Schottky anomalies in the specific heat and suppression of the superconducting transition temperature due to magnetic impurities. In agreement with previous discussions crystal field effects are found to clarify the systematics of magnetic transition temperature, but not to give a full explanation. Other phenomena, such as discrepancies in the magnetic moment of ErRh4B4 as measured by neutron diffraction and by Mo¨ssbauer spectroscopy cannot be explained as crystal field related phenomena.  相似文献   

2.
The results of measurements of thermal properties (specific heat) of potassium holmium double tungstate KHo(WO4)2 as a function of temperature (from 0.5 to 300?K) and magnetic field (up to 2?T) are presented. The total specific heat without the phonon and Schottky contributions is found to have the anomaly with maximum at T SPT?~?5?K. This anomaly is likely related with the structural phase transition (SPT) caused by the cooperative Jahn–Teller effect. The increase of specific heat at very low temperatures and its shift towards high temperatures with increasing magnetic field are observed. The origin of this behaviour can be connected with possible magnetic phase transition induced by magnetic field.  相似文献   

3.
《Physica B: Condensed Matter》2005,355(1-4):202-206
Specific heat (SH) measurements on TbMn2(H,D)2 powders have been performed in the temperature range from 2 to 350 K, in zero magnetic field and in 9 T. Due to the low heat conductivity of the samples, the measurements were carried out on a mixed Cu- and sample-powder pellet. For TbMn2, the anti-ferromagnetic phase transition was manifest by a single SH peak at TN=47 K, whereas a double SH peak at 281 and 288 K and an upturn below 5 K were observed for the hydride sample. Upon applying the magnetic field of 9 T, the SH upturn was suppressed, whereas no visible influence was found on the specific heat in the whole temperature range above 10 K as well as on the double peak.  相似文献   

4.
A. Jabar 《Phase Transitions》2018,91(3):284-292
The magnetic properties and magnetocaloric effect in YMnO3 have been investigated using Monte Carlo simulations. The thermal magnetization, specific heat and magnetic entropy have been obtained for different values of exchange interactions and for a several external magnetic field values. The variation of adiabatic temperature change with the temperatures has been obtained for several values of external magnetic field. It has been found that the sample exhibited a paramagnetic to ferromagnetic phase transition at 30 K. The transition temperature of YMnO3 has been deduced for different values of size (1/L) and different values of exchange interactions. The relative cooling power with several values of external magnetic field has been established.  相似文献   

5.
Investigations of the specific heat of the potassium gadolinium double tungstate KGd(WO4)2 have been performed over the temperature range from 0.05 K up to 4 K in zero magnetic field. The λ -type anomaly observed at T = 0.42 K was interpreted as an indication of a second order magnetic phase transition within the Gadolinium sublattice. The critical exponent α was determined from experimental data.  相似文献   

6.
The low-temperature thermal and magnetic-resonance properties of a monoclinic KDy(WO4)2 single crystal are investigated. It is established that a structural phase transition takes place at T c=6.38 K. The field dependence of the critical temperature is determined for a magnetic field oriented along the crystallographic a and c axes. The initial part of the H-T phase diagram is plotted for Ha. The prominent features of the structural phase transition are typical of a second-order Jahn-Teller transition, which is not accompanied by any change in the symmetry of the crystal lattice in the low-temperature phase. The behavior of C(T) in a magnetic field shows that the transition goes to an antiferrodistortion phase. An anomalous increase in the relaxation time (by almost an order of magnitude) following a thermal pulse is observed at T>T c(H), owing to the structural instability of the lattice. A theoretical model is proposed for the structural phase transition in a magnetic field, and the magnetic-field dependence of T c is investigated for various directions of the field. Fiz. Tverd. Tela (St. Petersburg) 40, 750–758 (April 1998)  相似文献   

7.
林虹  钟文定 《物理学报》1985,34(11):1385-1395
本文研究了Sm2(FeNiCoM)17合金(M为非磁性组元)的磁性。样品由六角结构无序型的2∶17主相及少量FeNi合金杂相组成。在六角结构的e轴方向(易磁化方向)观察到下述异常现象:低温(273K以下)时的磁化及反磁化曲线发生明显的跃变,跃变时相应的磁场Hr随温度下降而增大;磁滞迴线是蜂腰型的,温度愈低蜂腰愈明显;升温时磁化强度随温度变化(1.5K至居里点TC)的曲线上出现极大值,其相应的温度Tt随磁场增大而降低;降温时观察到了热磁滞后现象。但在基面(难磁化方向)上及Co含量增多(>18at%)时,样品却表现了正常的铁磁行为。本文提出用磁矩非共线结构排列的自旋再取向相变来解释上述异常现象,并给出自旋倒向所需越过的能垒高度U=9.2×10-15erg,用设想磁结构的模型得到的磁化强度的计算值与实验值也符合得较好。 关键词:  相似文献   

8.
The magnetic properties of an antiferromagnet with trigonal symmetry, namely, HoFe3(BO3)4, have been investigated theoretically. The calculations have been performed in the molecular field approximation and in the framework of the crystal field model for the rare-earth subsystem. Extensive experimental data on the magnetic properties of HoFe3(BO3)4 have been interpreted and good agreement between theory and experiment has been achieved using the obtained theoretical dependences. The spontaneous spin-reorientation transition and the spin-reorientation transition induced by a magnetic field Ba from the easy-axis to easy-plane state, as well as the spin-flop transition in a magnetic field Bc, have been described. It has been shown that the spontaneous spin-reorientation transition is a magnetic analog of the Jahn-Teller effect. The temperature dependences of the initial magnetic susceptibility at temperatures ranging from 2 to 300 K, the nonlinear curves of magnetization for Bc and Bc in a magnetic field up to 1.2 T (which indicate the occurrence of first-order phase transitions), and their evolution with variations in the temperature have been described, as well as the temperature and field dependences of the magnetization in a magnetic field up to 9 T. The parameters of the trigonal crystal field for the rare-earth ion Ho3+ and the parameters of the Fe-Fe and Ho-Fe exchange interactions have been determined in the course of interpretation of the experimental data.  相似文献   

9.
10.
A reliable technique of local chemical characterization of multicomponent semiconductor solid solutions has been developed, and the possibility of its application to the SnTe-SnSe quaternary solid solutions doped with 16 at.% In verified. The behavior of the electrical resistivity of samples of these solid solutions at low temperatures, 0.4–4.2 K, has been studied. The critical temperature T c and the second critical magnetic field H c2 of the superconducting transition and their dependences on the solid-solution composition have been determined. The superconducting transition at T c≈2–3 K is due to hole filling of the In-impurity resonance states, and the observed variation of the superconducting transition parameters with increasing Se content in the solid solution is related to the extrema in the valence band and the In band of resonance states shifting with respect to one another. Fiz. Tverd. Tela (St. Petersburg) 41, 612–617 (April 1999)  相似文献   

11.
The low-temperature specific heat of a La1.85Sr0.15CuO4 superconducting single crystal was investigated in magnetic fields up to 8 T and with four orientations — in the a-b plane (along the (100) and (110) directions) and at angles of 45° and 90° with respect to the a-b plane (along the (103) and (001) directions). Anisotropy was observed in the field dependence of the specific heat in the a-b plane. The specific heat was found to be minimum with the field oriented in the direction of the a axis and maximum with the field oriented in a direction making an angle of 45° with the a axis. This can be explained by the anisotropy of the energy gap, whose minimum lies along the (110) direction. For all orientations of the magnetic field the specific heat of the mixed state at low temperatures is a nonlinear function of the magnetic field strength. Pis’ma Zh. éksp. Teor. Fiz. 66, No. 11, 683–687 (10 December 1997)  相似文献   

12.
The results of the experimental investigation of the magnetic properties of the SmFeGe2O7 compound have been presented. It has been found that the temperature dependence of the susceptibility exhibits two features that coincide with the anomalies in the temperature dependence of the specific heat and indicate magnetic phase transitions in SmFeGe2O7. The external magnetic field induces a magnetic transition, the critical field of which depends on the temperature.  相似文献   

13.
Magnetic field (0–4 T) and temperature dependencies (4.2–320 K) of the electrical resistance of Gd5(Si1.5Ge2.5), which undergoes a reversible first-order ferromagnetic↔paramagnetic phase transition, have been measured. The electrical resistance of Gd5(Si1.5Ge2.5) indicates that the magnetic phase transition can be induced by both temperature and magnetic field. The temperature dependence of the electrical resistance, R(T), for heating at low temperatures in the zero magnetic field has the usual metallic character, but at a critical temperature of Tcr=216 K the resistance shows a 20% negative discontinuity due to the transition from the low-temperature high-resistance state to the high-temperature low-resistance state. The R(T) dependence for cooling shows a similar but positive 25% discontinuity at 198 K. The isothermal magnetic field dependence of the electrical resistance from 212T224 K indicates the presence of temperature-dependent critical magnetic fields which can reversibly transform the paramagnetic phase into the ferromagnetic phase and vice versa. The critical magnetic fields diagram determined from the isothermal magnetic field dependencies of the electrical resistance of Gd5(Si1.5Ge2.5) shows that the FM↔PM transition in zero magnetic field on cooling and heating occurs at 206 and 213 K, respectively. The full isothermal magnetic filed hysteresis for the FM↔PM transition is 2 T, and the isofield temperature gap between critical magnetic fields is 7 K.  相似文献   

14.
We report the results of a 51V nuclear magnetic resonance (NMR) study on the single crystal BaCo2V 2O8 at temperatures between 3 and 300 K. The NMR features for fields both parallel and perpendicular to the c-axis have been identified. We found no substantial changes in the NMR shift and line width at low temperatures as a constant field of 7.06 T was applied along the c-axis. The NMR observations thus indicate the absence of magnetic long-range ordering under this field, consistent with the specific heat result which showed the disappearance of the magnetic transition beyond an external field of 4 T in BaCo2V 2O8.  相似文献   

15.
It has been found that the magnetic susceptibility of (Sm0.5Gd0.5)0.55Sr0.45MnO3 ceramic samples in zero external magnetic field exhibits a sharp peak near the temperature of 48.5 K with a small temperature hysteresis that does not depend on the frequency of measurements and is characteristic of the phase transition to an antiferromagnetic state with a long-range charge orbital ordering, which is accompanied by an increase in the magnetic susceptibility with a decrease in the temperature. The magnetization isotherms in static and pulsed magnetic fields at temperatures below 60 K demonstrate the occurrence of an irreversible metamagnetic transition to a homogeneous ferromagnetic state with a critical transition field independent of the measurement temperature, which, apparently, is associated with the destruction of the insulating state with a long-range charge ordering. In the temperature range 60 K ?? T ?? 150 K, the ceramic samples undergo a magnetic-field-induced reversible phase transition to the ferromagnetic state, which is similar to the metamagnetic transition in the low-temperature phase and is caused by the destruction of local charge/orbital correlations. With an increase in the temperature, the critical transition fields increase almost linearly and the field hysteresis disappears. Near the critical fields of magnetic phase transitions, small ultra-narrow magnetization steps have been revealed in pulsed fields with a high rate of change in the magnetic field of ??400 kOe/??s.  相似文献   

16.
Polycrystalline binary rare earth intermetallic compound DySi is found to be dimorphic at room temperature (orthorhombic FeB type, space group Pnma, No. 62 and CrB type, space group Cmcm, No. 63). This compound exhibits interesting magnetic properties including an antiferromagnetic transition at ∼38 K (TN) and a low-temperature field-induced transition in a critical field of 65 kOe, at 5 K. The values of magnetic entropy change and adiabatic temperature change near the magnetic transition in DySi have been estimated using the heat capacity data obtained in different applied fields. Negative magnetocaloric effect is observed at temperatures close to and below TN, in fields up to 50 kOe.  相似文献   

17.
18.
A correlation between the second critical field Hc2 of the helix to paramagnetic transition and the magnetic specific heat C-peak was found in ZnCr2−xAlxSe4 spinel single crystals with x=0.15, 0.23. The specific heat peak is anomalously sharp for all finite magnetic fields used here and this points to a first order magneto-structural transition (from cubic to tetragonal symmetry). The C(T)-peak is increasingly suppressed as the external field increases. Approaching the Neel temperature TN, a broad ac-magnetic susceptibility peak is observed for zero dc-magnetic field. That peak does not show an energy loss and thus points towards a return to a second order type of transition. The magnetic contribution to the specific heat displays a sharp peak at TN and is maximal at the spin fluctuation temperature Tsf=34 K. Tsf is related to the maximum of the magnetic susceptibility at Tm=40 K (at 50 kOe) in the spin fluctuation region, as evidenced by the entropy exceeding 90% of the entropy calculated classically for the complete alignment of the Cr spins, (2−x)R ln(2S+1). The X-ray photoelectron spectroscopy (XPS) data indicate that Al-substitution does not affect Cr3+ 3d3 electronic configuration.  相似文献   

19.
Specific heat measurements between 0.5 and 4.2°K are reported for the system (La, Gd) Al2 in both the superconducting and normal state. The observed specific heat jump at the superconducting transition temperature Tc is in excellent agreement with the Abrikosov-Gor'kov (AG) theory. This is in accordance with the previously reported close correspondence of the Tc vs. Gd concentration curve with the AG theory. Two very interesting features occur in the normal state specific heat. First, the Gd impurities cause a surprisingly strong enhancement of the electronic specific heat coefficient. Second, there is a large magnetic field dependent Schottky-like anomaly at low temperatures. This anomaly persists even in the superconducting state.  相似文献   

20.
The Pr 1-x CaxMnO3 system exhibits a ferromagnetic insulating state for the composition range x ? 0.25. A metallic ferromagnetic state is never realized because of the low hole concentration and the very small averaged A-site cation radius. In the present study, the nature of the magnetic excitations at low temperature has been investigated by specific heat measurements on a Pr 0.8 Ca0.2MnO3 single crystal. The decrease of the specific heat under magnetic field is qualitatively consistent with a suppression of ferromagnetic spin waves in a magnetic field. However, at low temperature, the qualitative agreement with the ferromagnetic spin waves picture is poor. It appears that the large reduction of the specific heat due to the spin waves is compensated by a Schottky-like contribution possibly arising from a Zeeman splitting of the ground state multiplet of the Pr3+ ions. Received 21 May 2001 and Received in final form 14 December 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号