首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Yun KS  Yoon E 《Lab on a chip》2008,8(2):245-250
This paper demonstrates a new method of implementing complex microchannels in PDMS, which is simply constructed using three-dimensional photoresist structures as a master mold for the PDMS replica process. The process utilizes UV-insensitive LOR resist as a sacrificial layer to levitate the structural photoresist. In addition, the thickness of photoresist structures can be controlled by multi-step UV exposure. By using these techniques, various three-dimensional photoresist structures were successfully implemented, including the recessed cantilevers, suspended bridges, and the complex plates with micro-pits or micro-villi. We demonstrate that the three-dimensional photoresist structures are applicable to implementing complex multiple microchannels in PDMS by using the PDMS replica method.  相似文献   

2.
Li HF  Lin JM  Su RG  Cai ZW  Uchiyama K 《Electrophoresis》2005,26(9):1825-1833
A protocol of producing multiple polymeric masters from an original glass master mold has been developed, which enables the production of multiple poly(dimethylsiloxane) (PDMS)-based microfluidic devices in a low-cost and efficient manner. Standard wet-etching techniques were used to fabricate an original glass master with negative features, from which more than 50 polymethylmethacrylate (PMMA) positive replica masters were rapidly created using the thermal printing technique. The time to replicate each PMMA master was as short as 20 min. The PMMA replica masters have excellent structural features and could be used to cast PDMS devices for many times. An integration geometry designed for laser-induced fluorescence (LIF) detection, which contains normal deep microfluidic channels and a much deeper optical fiber channel, was successfully transferred into PDMS devices. The positive relief on seven PMMA replica masters is replicated with regard to the negative original glass master, with a depth average variation of 0.89% for 26-microm deep microfluidic channels and 1.16% for the 90 mum deep fiber channel. The imprinted positive relief in PMMA from master-to-master is reproducible with relative standard deviations (RSDs) of 1.06% for the maximum width and 0.46% for depth in terms of the separation channel. The PDMS devices fabricated from the PMMA replica masters were characterized and applied to the separation of a fluorescein isothiocyanate (FITC)-labeled epinephrine sample.  相似文献   

3.
This work describes a novel and cost-effective method of polydimethylsiloxane (PDMS) microchips fabrication by using a printing plate photopolymer called Flexcel as a master mold (Fmold). This method has demonstrated the ability to generate multiple devices from a single master, reaching a minimum channel size of 25 μm, structures height ranging from 53 to 1500 μm and achieving dimensions of 1270 × 2062 mm2, which are larger than those obtained by the known techniques to date. Scanning electron microscopy, atomic force microscopy, and profilometry techniques have been employed to characterize the Fmold and PDMS replicas. The results showed high replication fidelity of Fmold to the PDMS replica. Furthermore, it was proved the reusability of the Fmold. In our study, up to 50 PDMS replicas have been fabricated without apparent degradation of the mold. The feasibility of the resulting PDMS replica was effectively demonstrated using a microfluidic device for enhanced oil recovery analysis. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1433–1442  相似文献   

4.
In the study, a novel and low cost nanofabrication process is proposed for producing hybrid polydimethylsiloxane (PDMS) nanostructured arrays. The proposed process involves monolayer self-assembly of polystyrene (PS) spheres, PDMS nanoreplication, thin film coating, and PDMS to PDMS (PDMS/PDMS) replication. A self-assembled monolayer of PS spheres is used as the first template. Second, a PDMS template is achieved by replica moulding. Third, the PDMS template is coated with a platinum or gold layer. Finally, a PDMS nanostructured array is developed by casting PDMS slurry on top of the coated PDMS. The cured PDMS is peeled off and used as a replica surface. In this study, the influences of the coating on the PDMS topography, contact angle of the PDMS slurry and the peeling off ability are discussed in detail. From experimental evaluation, a thickness of at least 20 nm gold layer or 40 nm platinum layer on the surface of the PDMS template improves the contact angle and eases peeling off. The coated PDMS surface is successfully used as a template to achieve the replica with a uniform array via PDMS/PDMS replication process. Both the PDMS template and the replica are free of defects and also undistorted after demoulding with a highly ordered hexagonal arrangement. In addition, the geometry of the nanostructured PDMS can be controlled by changing the thickness of the deposited layer. The simplicity and the controllability of the process show great promise as a robust nanoreplication method for functional applications.  相似文献   

5.
This study presents a straightforward two-step fabrication process of durable, completely superhydrophobic microchannels in PDMS. First, a composite material of PDMS/PTFE particles is prepared and used to replicate a master microstructure. Superhydrophobic surfaces are formed by subsequent plasma treatment, in which the PDMS is isotropically etched and PTFE particles are excavated. We compare the advancing and receding contact angles of intrinsic PDMS samples and composite PTFE/PDMS samples (1 wt %, 8 wt %, and 15 wt % PTFE particle concentration) and demonstrate that both the horizontal and vertical surfaces are indeed superhydrophobic. The best superhydrophobicity is observed for samples with a PTFE particle concentration of 15 wt %, which have advancing and receding contact angles of 159° ± 4° and 158° ± 3°, respectively.  相似文献   

6.
A new glass/PDMS hybrid chip for contactless conductivity detection is reported. This chip consists of a glass substrate with microchannels and a PDMS cover sheet embedded with a small integrated electrode plate. In the region of detection, electrodes are insulated from the microchannel by a formed PDMS membrane about 100 μm in thickness. Without any modification, this glass/PDMS chip is suitable for contactless conductivity detection with good properties, such as excellent heat-dissipation, stable electroosmotic flow, high separation efficiency, satisfactory sensitivity, simple construction and high degree of integration. Its feasibility and performance had been demonstrated by analyzing inorganic ions and amino acids in mixtures, and alkaloids in traditional Chinese medicine. The limits of detection reached micromole per liter (μmol L?1) levels. This microchip could be promising for mass production due to its stability, reproducibility, ease of fabrication and low cost.  相似文献   

7.
Li  Ou-Lian  Tong  Yan-Li  Chen  Zuan-Guang  Liu  Cui  Zhao  Shen  Mo  Jin-Yuan 《Chromatographia》2008,68(11):1039-1044

A new glass/PDMS hybrid chip for contactless conductivity detection is reported. This chip consists of a glass substrate with microchannels and a PDMS cover sheet embedded with a small integrated electrode plate. In the region of detection, electrodes are insulated from the microchannel by a formed PDMS membrane about 100 μm in thickness. Without any modification, this glass/PDMS chip is suitable for contactless conductivity detection with good properties, such as excellent heat-dissipation, stable electroosmotic flow, high separation efficiency, satisfactory sensitivity, simple construction and high degree of integration. Its feasibility and performance had been demonstrated by analyzing inorganic ions and amino acids in mixtures, and alkaloids in traditional Chinese medicine. The limits of detection reached micromole per liter (μmol L−1) levels. This microchip could be promising for mass production due to its stability, reproducibility, ease of fabrication and low cost.

  相似文献   

8.
Yue W  Li CW  Xu T  Yang M 《Lab on a chip》2011,11(19):3352-3355
We have developed a single step microfabrication method to prepare constriction microstructures on a PCB master by controlling the etching time of two microchannels separated by a finite distance that is easily attainable using imagesetters widely available in the printing industry. PDMS replica of the constriction structures present sieving microstructures (microsieves) that could be used for size-dependent trapping of microspheres, biological cells and the formation of water-in-oil droplets.  相似文献   

9.
A simple method to fabricate circular microchannels in polydimethylsiloxane (PDMS) is presented. A coating of liquid PDMS is applied on the walls of rectangular microchannels, fabricated using standard soft-lithography, by introducing a pressurized air stream inside the PDMS filled microchannels. Surface tension of the liquid PDMS forces the coating to take a circular cross-section which is preserved by baking the device to cure the coated layer. Diameters ranging from a few micrometres to a few hundreds of micrometres were achieved. The method was verified to work on microchannel networks as well as in straight channels. Different coating conditions were systematically tested. Design curves are reported for one to choose appropriate coating conditions for obtaining a desired diameter. A comparison between the performance of square and circular microchannels in trapping SiHa cells (cervical cancer cell line) is shown.  相似文献   

10.
聚二甲基硅氧烷微流控芯片的紫外光照射表面处理研究   总被引:17,自引:0,他引:17  
研究了紫外光化学表面改性对聚二甲基硅氧烷(PDMS)微流控芯片的片基间粘接力及毛细管通道电渗流性能的影响.PDMS片基经紫外光射照后,粘接力增强,可实现PDMS芯片的永久性封合,同时亲水性得到改善,通道中的电渗流增大.与文献报道的等离子体表面处理方法比较,采用紫外光表面处理,设备简单,操作方便,耗费少,是一种简单易行的聚二甲基硅氧烷芯片表面处理方法.  相似文献   

11.
Polydimethylsiloxane (PDMS) based microfluidic devices have found increasing utility for electrophoretic and electrokinetic assays because of their ease of fabrication using replica molding. However, the fabrication of high-resolution molds for replica molding still requires the resource-intensive and time-consuming photolithography process, which precludes quick design iterations and device optimization. We here demonstrate a low-cost, rapid microfabrication process, based on electrohydrodynamic jet printing (EJP), for fabricating non-sacrificial master molds for replica molding of PDMS microfluidic devices. The method is based on the precise deposition of an electrically stretched polymeric solution of polycaprolactone in acetic acid on a silicon wafer placed on a computer-controlled motion stage. This process offers the high-resolution (order 10  μ $\umu$ m) capability of photolithography and rapid prototyping capability of inkjet printing to print high-resolution templates for elastomeric microfluidic devices within a few minutes. Through proper selection of the operating parameters such as solution flow rate, applied electric field, and stage speed, we demonstrate microfabrication of intricate master molds and corresponding PDMS microfluidic devices for electrokinetic applications. We demonstrate the utility of the fabricated PDMS microchips for nonlinear electrokinetic processes such as electrokinetic instability and controlled sample splitting in ITP. The ability to rapid prototype customized reusable master molds with order 10  μ $\umu$ m resolution within a few minutes can help in designing and optimizing microfluidic devices for various electrokinetic applications.  相似文献   

12.
Kim SH  Cui Y  Lee MJ  Nam SW  Oh D  Kang SH  Kim YS  Park S 《Lab on a chip》2011,11(2):348-353
This study describes a simple and low cost method for fabricating enclosed transparent hydrophilic nanochannels by coating low-viscosity PDMS (monoglycidyl ether-terminated polydimethylsiloxane) as an adhesion layer onto the surface of the nanotrenches that are molded with a urethane-based UV-curable polymer, Norland Optical Adhesive (NOA 63). In detail, the nanotrenches made of NOA 63 were replicated from a Si master mold and coated with 6 nm thick layer of PDMS. These nanotrenches underwent an oxygen plasma treatment and finally were bound to a cover glass by chemical bonding between silanol and hydroxyl groups. Hydrophobic recovery that is observed in the bulk PDMS was not observed in the thin film of PDMS on the mold and the PDMS-coated nanochannel maintained its surface hydrophilicity for at least one month. The potentials of the nanochannels for bioapplications were demonstrated by stretching λ-DNA (48,502 bp) in the channels. Therefore, this fabrication approach provides a practical solution for the simple fabrication of the nanochannels for bioapplications.  相似文献   

13.
The fabrication of microfluidic channels with complex three-dimensional (3D) geometries presents a major challenge to the field of microfluidics, because conventional lithography methods are mainly limited to rectangular cross-sections. In this paper, we demonstrate the use of mechanical micromachining to fabricate microfluidic channels with complex cross-sectional geometries. Micro-scale milling tools are first used to fabricate semi-circular patterns on planar metallic surfaces to create a master mold. The micromilled pattern is then transferred to polydimethylsiloxane (PDMS) through a two-step reverse molding process. Using these semi-circular PDMS channels, circular cross-sectioned microchannels are created by aligning and adhering two channels face-to-face. Straight and serpentine-shaped microchannels were fabricated, and the channel geometry and precision of the metallic master and PDMS molds were assessed through scanning electron microscopy and non-contact profilometry. Channel functionality was tested by perfusion of liquid through the channels. This work demonstrates that micromachining enabled soft lithography is capable of fabricating non-rectangular cross-section channels for microfluidic applications. We believe that this approach will be important for many fields from biomimetics and vascular engineering to microfabrication and microreactor technologies.  相似文献   

14.
Applications of poly(dimethylsiloxane) (PDMS)-based microfluidic systems are more popular nowadays. Previous fabrication methods of the masters for PDMS microchannels require complicated steps and/or special device. In this paper, we demonstrated that the toner printed on the transparency film with the office laser printer (1200 dpi) can be used as the positive relief of the masters. The transparency film was printed in two steps in order to obtain the same printing quality for the crossed lines. With the laser-printed master, the depth of the fabricated PDMS microchannels was ca. 10 microm and the smallest width was ca. 60 microm. Surface characteristics of the PDMS/PDMS microchannels were performed with SEM. Their electrokinetic properties were investigated by the aids of the measurement of electroosmotic flow (EOF) and the Ohm's curve. Using the PDMS/PDMS microchip CE systems, electroactive biological molecules and non-electroactive inorganic ions were well separated, respectively. This simple approach could make it easy to carry out the studies of PDMS microfluidic systems in more general labs without special devices.  相似文献   

15.
Liu C  Cui D  Cai H  Chen X  Geng Z 《Electrophoresis》2006,27(14):2917-2923
We present a novel concept of glass/poly(dimethylsiloxane) (PDMS)/glass sandwich microchip and developed a thin-casting method for fabrication. Unlike the previously reported casting method for fabricating PDMS microchip, several drops of PDMS prepolymer were first added on the silanizing SU-8 master, then another glass plate was placed over the prepolymer as a cover plate, and formed a glass plate/PDMS prepolymer/SU-8 master sandwich mode. In order to form a thin PDMS membrane, a weight was placed on the glass plate. After the whole sandwich mode was cured at 80 degrees C for 30 min, the SU-8 master was easily peeled and the master microstructures were completely transferred to the PDMS membrane which was tightly stuck to the glass plate. The microchip was subsequently assembled by reversible sealing with the glass cover plate. We found that this PDMS sandwich microchip using the thin-casting method could withstand internal pressures of >150 kPa, more than 5 times higher than that of the PDMS hybrid microchip with reversible sealing. In addition, it shows an excellent heat-dissipating property and provides a user-friendly rigid interface just like a glass microchip, which facilitates manipulation of the microchip and fix tubing. As an application, PDMS sandwich microchips were tested in the capillary electrophoresis separation of fluorescein isothiocyanate-labeled amino acids.  相似文献   

16.
This paper characterizes the basic electrokinetic phenomena occurring within native poly(dimethylsiloxane) (PDMS) microchannels. Using simple buffers and current measurements, current density and electroosmosis data were determined in trapezoidal, reversibly sealed PDMS/PDMS and hybrid PDMS/glass channels with a cross-sectional area of 1035.5 microm(2) and about 6 cm length. This data was then compared to that obtained in an air-thermostated 50 microm inner diameter (1963.5 microm(2) cross-sectional area) fused-silica (FS) capillary of 70 cm length. Having a pH 7.8 buffer with an ionic strength (I) of 90 mM, Ohms's law was observed in the microchannels with electric field strengths of up to about 420 V/cm, which is about twice as high as for the FS capillary. The electroosmotic mobility (micro(EO)) in PDMS and FS is shown to exhibit the same general dependences on I and pH. For all configurations tested, the experimentally determined micro(EO) values were found to correlate well with the relationship micro(EO) = a + b log(I), where a and b are coefficients that are determined via nonlinear regression analysis. Electroosmotic fluid pumping in native PDMS also follows a pH dependence that can be estimated with a model based upon the ionization of silanol. Compared to FS, however, the magnitude of the electroosmotic flow in native PDMS is 50-70% smaller over the entire pH range and is difficult to maintain at acidic pH values. Thus, the origin of the negative charge at the inner wall of PDMS, glass, and FS appears to be similar but the density is lower for PDMS than for glass and FS.  相似文献   

17.
Plastics are increasingly being used for the fabrication of Lab-on-a-Chip devices due to the variety of beneficial material properties, affordable cost, and straightforward fabrication methods available from a range of different types of plastics. Rapid prototyping of polydimethylsiloxane (PDMS) devices has become a well-known process for the quick and easy fabrication of microfluidic devices in the research laboratory; however, PDMS is not always an appropriate material for every application. This paper describes the fabrication of thermoset polyester microfluidic devices and masters for hot embossing using replica molding techniques. Rapid prototyped PDMS molds are convienently used for the production of non-PDMS polymeric devices. The recessed features in the cast polyester can be bonded to a second polyester piece to form an enclosed microchannel. Thermoset polyester can withstand moderate amounts of pressure and elevated temperature; therefore, the cast polyester piece also can be used as a master for embossing polymethylmethacrylate (PMMA) microfluidic systems. Examples of enclosed polyester and PMMA microchannels are presented, and we discuss the electroosmotic properties of both types of channels, which are important for analytical applications such as capillary electrophoresis.  相似文献   

18.
We describe a method based on plasma polymerization for the modification and control of the surface properties of poly(dimethylsiloxane) (PDMS) surfaces. By depositing plasma polymerized acrylic acid coatings on PDMS, we succeeded to fabricate stable (several days) hydrophilic and patterned hydrophobic/hydrophilic surfaces. We used this approach to generate direct and (for the first time in this material) double emulsions in PDMS microchannels.  相似文献   

19.
Zhang Q  Xu JJ  Chen HY 《Electrophoresis》2006,27(24):4943-4951
We propose a convenient and reliable approach for immobilizing microbeads on poly(dimethylsiloxane) (PDMS) microchips. It is built upon a simple fabrication procedure of PDMS chip through directly printing the master with an office laser printer which was described in our previous work (J. Chromatogr. A 2005, 1089, 270-275). On the printed toners used as the positive relief of the master, microbeads were immobilized by a thermal treatment and then transferred to the surface of the microchip by direct molding of the prepolymer on the master. With this approach, the region-selective immobilization of microbeads and the fabrication of PDMS microchips can be accomplished at the same time. Then, using these microbeads as supports, further modification with enzyme was achieved. Surface characteristics of the microbeads-modified PDMS microchannels were investigated with scanning electron microscope, atomic force microscope, and inverse fluorescence microscope. The electrokinetic properties of the native PDMS and the modified PDMS chips were also compared. Based on this approach, an immobilized glucose oxidase (GOD) reactor was constructed and the reaction using glucose as substrate was studied. All these experiments aim to show that the proposed approach may have a good potential in the study of biochemistry and other related areas.  相似文献   

20.
Hung LH  Lin R  Lee AP 《Lab on a chip》2008,8(6):983-987
This paper presents a rapid, simple, and low-cost fabrication method to prepare solvent resistant and biocompatible microfluidic devices with three-dimensional geometries. The devices were fabricated in thiolene and replicated from PDMS master with high molding fidelity. Good chemical compatibility for organic solvents allows volatile chemicals in synthesis and analysis applications. The surface can be processed to be hydrophobic or hydrophilic for water-in-oil and oil-in-water emulsions. Monodisperse organic solvent droplet generation is demonstrated to be reproducible in thiolene microchannels without swelling. The thiolene surface prevents cell adhesion but normal cell growth and adhesion on glass substrates is not affected by the adjacent thiolene patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号