首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The power of capillary gas chromatography can be enhanced by selective fractionation of the sample. One way of doing this is heart cutting from a packed gas chromatographic column. This paper describes modification of a commercial instrument for such separations. Components of the system include an automated Deans switch and an electrically heated trap. The benefits of this arrangement are illustrated with chromatograms of naphtha, urinary aromatic acids, and wine volatiles.  相似文献   

2.
A flow controlled adjustable splitter was configured from a Deans switch and employed in an automated dual column gas chromatographic (GC) system for analyzing mono-aromatic compounds. Volatile organic compounds (VOCs), thermally desorbed from the sorbent trap, were split by the adjustable splitter onto two columns of different phases for separation and then detection by flame ionization detection (FID). Unlike regular splitters in which the split ratio is passively determined by the diameter and/or length of the connecting columns or tubing, the split ratio in our adjustable splitter is controlled by the auxiliary flow in the Deans switch. The auxiliary flow serves as a gas plug on either side of the column for decreasing the sample flow in one transfer line, but increasing the flow in the other. By adjusting the auxiliary flow and therefore the size of the gas plug, the split ratio can be easily varied and favorable to the side of no auxiliary gas. As an illustration, two columns, DB-1 and Cyclodex-B, were employed in this study for separating benzene, toluene, ethylbenzene, xylenes, denoted as BTEX, in particular the structural isomers of o-, m-, p-xylenes. This configuration demonstrates that BTEX cannot be fully separated with either column, but can be deconvoluted by simple algebra if dual columns are used with a splitter. The applicability of the proposed concept was tested by analyzing a gas standard containing BTEX at different split ratios and with various sample sizes, all leading to a constant ratio of m-xylene versus p-xylene.  相似文献   

3.
In this study, a new system for analysis using a dual comprehensive two-dimensional gas chromatography/targeted multidimensional gas chromatography (switchable GC × GC/targeted MDGC) analysis was developed. The configuration of this system not only permits the independent operation of GC, GC × GC and targeted MDGC analyses in separate analyses, but also allows the mode to be switched from GC × GC to targeted MDGC any number of times through a single analysis. By incorporating a Deans switch microfluidics transfer module prior to a cryotrapping device, the flow stream from the first dimension column can be directed to either one of two second dimension columns in a classical heart-cutting operation. Both second columns pass through the cryotrap to allow solute bands to be focused and then rapidly remobilized to the respective second columns. A short second column enables GC × GC operation, whilst a longer column is used for targeted MDGC. Validation of the system was performed using a standard mixture of compounds relevant to essential oil analysis, and then using compounds present at different abundances in lavender essential oil. Reproducibility of retention times and peak area responses demonstrated that there was negligible variation in the system over the course of multiple heart-cuts, and proved the reliable operation of the system. An application of the system to lavender oil, as a more complex sample, was carried out to affirm system feasibility, and demonstrate the ability of the system to target multiple components in the oil. The system was proposed to be useful for study of aroma-impact compounds where GC × GC can be incorporated with MDGC to permit precise identification of aroma-active compounds, where heart-cut multidimensional GC-olfactometry detection (MDGC-O) is a more appropriate technology for odour assessment.  相似文献   

4.
Two‐dimensional heart‐cutting gas chromatography is used to analyze dissolved hydrogen sulfide in crude samples. Liquid samples are separated first on an HP‐PONA column, and the light sulfur gases are heart‐cut to a GasPro column, where hydrogen sulfide is separated from other light sulfur gases and detected with a sulfur chemiluminescence detector. Heart‐cutting is accomplished with the use of a Deans switch. Backflushing the columns after hydrogen sulfide detection eliminates any problems caused by high‐boiling hydrocarbons in the samples. Dissolved hydrogen sulfide is quantified in 14 crude oil samples, and the results are shown in this work. The method is also applicable to the analysis of headspace hydrogen sulfide over crude oil samples. Gas hydrogen sulfide measurements are compared to liquid hydrogen sulfide measurements for the same sample set. The chromatographic system design is discussed, and chromatograms of representative gas and liquid measurements are shown.  相似文献   

5.
The performance characteristics of a portable GC instrument requiring no compressed gas supplies and using relatively lightweight transportable components for the analysis of volatile organic components in large-volume air samples are described. To avoid the need for compressed gas tanks, ambient air is used as the carrier gas, and a vacuum pump is used to pull the carrier gas and injected samples through the wall-coated capillary column and a photoionization detector (PID). At-column heating is used eliminating the need for a conventional oven. The fused silica column is wrapped with heater wire and sensor wire so that heating is provided directly at the column. A PID is used since it requires no external gas supplies and has high sensitivity for many compounds of interest in environmental air monitoring. In order to achieve detection limits in the ppb range, an online multibed preconcentrator containing beds of graphitized carbons and carbon molecular sieves is used. After sample collection, the flow direction through the preconcentrator is reversed, and the sample is thermally desorbed directly into the column. Decomposition of sensitive compounds during desorption is greater with air as the carrier gas than with hydrogen.  相似文献   

6.
Multidimensional gas chromatography (2D GC) is demonstrated as a way to improve limits of detectability of spectrophotometric detectors. UV and IR detectors are generally less sensitive than mass spectrometers or other GC detectors. This has placed some limitations on the useful capabilities provided by spectrophotometric detectors, such as the ability to provide structure‐related information for a particular analyte. In this paper, we report results from interfacing a 2D GC instrument to a UV detector. Symmetry factor and the ratio of retention time divided by peak width did not show deterioration of the quality of chromatography when a megabore column was used with this detector. Furthermore, an increase in the limits of detectability over that attainable in a single‐column system was realized by using the 2D GC system. However, the low flow (1 mL/min) imposed by the use of a microbore column (250 μm ID) caused significant tailing when the UV detector was used.  相似文献   

7.
Two approaches are described and compared for the analysis of suspected allergens (SAs) in fragrance products, which are defined by the Scientific Committee of Cosmetics and Non-Food Products (SCCNFP). The first consists of a comprehensive two-dimensional gas chromatography (GCxGC) experiment using both a "conventional" non-polar/polar column combination and an "inverse" polar/non-polar column set. The second approach uses a targeted multidimensional gas chromatography (MDGC) system employing a Deans type pneumatic switch and a longitudinally modulated cryogenic system (LMCS). It was found that the conventional and inverse column sets complement each other well, providing identification of SAs present. Compounds well retained on the second dimension of one column set were the first to be eluted from the other. In some instances SAs co-eluting with matrix components on the second dimension for a given column set were clearly resolved on the other, although this has the disadvantage of requiring two analytical runs. Targeted MDGC with a non-polar/polar column set, successfully separated all SAs identified within a fragrance product. The instrument is set up in a similar fashion to a GCxGC system though with longer second dimension ((2)D) column, a cryogenic trap at the beginning of the second column, and a pneumatic switch coupling both columns. The data are easier to process than for a GCxGC experiment. The targeted MDGC method has the capacity to deliver far greater efficiency to targeted regions of a primary separation than a GCxGC experiment, whilst still maintaining overall run times similar to those of a conventional one-dimensional (1D) GC experiment. Cryogenic focussing at the beginning of the (2)D column delivers enhanced sensitivity, accurate (2)D retention times and narrow peak widths; these are responsible for an increased resolution obtained from the fast, relatively short ( approximately 5m) (2)D column. The two column set GCxGC analysis provided a quick and effective means to qualitatively determine the presence of six SAs in a commercially available air freshener, however all were not adequately resolved from matrix components. In contrast, quantitation was straightforward using the targeted MDGC method.  相似文献   

8.
Summary An automated instrument for preparative scale separations is described. The instrumental system, which does not include the general use of temperature programmed operation allows for the application of multidimensional techniques of carrier gas flow switching such as heart cutting, backflushing etc. in order to optimize the resolution within selected cuts taken from a preseparation, to enrich trace components or to shorten separation times at still sufficient sample capacity of the entire system. Typical applications of the instrument are discussed. Presented at the 15th International Symposium on Chromatography, Nürnberg, October 1984  相似文献   

9.
Comprehensive gas chromatography is the realization of true continuous multidimensional (dual column) gas chromatography. The key requirement in the comprehensive GC experiment is that the second dimension analysis is completed in a rapid time‐frame compared to the elution of components in the first dimension, and that the two coupled dimensions represent ‘orthogonal’ analyses towards the analytes to be separated. The former normally necessitates pulsing of contiguous segments of each chromatographic band from the first to the second dimensions. The two dimensions should be in fluid communication. The comprehensive GC×GC experiment passes all the column flow from the first column to the second column, leading to no sample loss, but this also requires a suitable method for time‐ or zone‐compression of the band to be pulsed to the second column. The final pulse should be narrow, and should be delivered to the second column quickly. A simple procedure can achieve this using the cryogenic modulator that has been recently described by this group. The system uses a cryogenic trap which can be moved away from the cooled zone of the column faster than 10 ms. A fast‐acting pneumatic ram achieves this performance. The cooled column heats up to the prevailing oven temperature within 10–15 ms. Molecules as volatile as C5 alkanes or small aromatics will be fully retained by the trap within the period of modulation used for GC×GC. The technique is simple to implement and requires no special column connections. Using a gas chromatograph which allows control of external events and can acquire from a detector at 50 Hz or faster, and a timing controller for modulation, the comprehensive result can easily and effectively be achieved.  相似文献   

10.
A two- dimensional gas chromatograph based on the Deans switching principle is described. The unit comprises two separate ovens, each containing a fused silica capillary column. The columns are joined in a specially designed manifold permitting heart cuts to be performed without significant decrease in efficiency. The switching speed and the retention time stability of the system made it possible to perform heart cuts of only a few seconds' duration. The system has been used under isothermal conditions for the determination of an amino alcohol (KABI 2128) in the low ng/ml range after trifluoroacetylation and with electron capture detection. A much shorter clean-up procedure could be used in combination with the two-dimensional gas chromatograph as compared to a method using a single glass capillary column.  相似文献   

11.
This study investigated the feasibility of analyzing a full range of ambient volatile organic compounds (VOCs) from C(3) to C(12) using gas chromatograph mass spectrometry (GC/MS) coupled with thermal desorption. Two columns were used: a PLOT column separated compounds lighter than C(6) and a DB-1 column separated C(6)-C(12) compounds. An innovative heart-cut technique based on the Deans switch was configured to combine the two column outflows at the ends of the columns before entering the MS. To prevent the resolved peaks from re-converging after combining, two techniques were attempted (hold-up vs. back-flush) to achieve the intended "delayed" elution of heavier components. Thus, the resulting chromatogram covering the full range of VOCs is a combination of two separate elutions, with the heavier section following the lighter section. With the hold-up method, band-broadening inevitably occurred for the delayed C(6)-C(7) DB-1 compounds while the light compounds eluted from the PLOT column. This broadening problem resulted in peak tailing that was largely alleviated by adding a re-focusing stage while the DB-1 compounds were back-flushed, and this modified technique is referred to as the back-flush method. With this modification, the separation of the C(6)-C(7) compounds improved dramatically, as revealed by the decrease in peak asymmetry (As) and increase in resolution. Linearity and precision for these peaks also improved, yielding R(2) and RSD values better than 0.9990 and 2.8%, respectively.  相似文献   

12.
A gas chromatographic system was constructed to simultaneously measure ambient non-methane hydrocarbons (NMHCs) and halocarbons, which play significant roles in tropospheric ozone formation and stratospheric ozone loss, respectively. A heart-cut device based on a Deans switch was connected to two capillary columns to cover the full range of NMHCs and halocarbons. Analytes more volatile than C6 NMHCs and the halocarbon CFC-113 were separated with a PLOT column, while the remaining less volatile compounds were separated with a DB-1 column. Merge-and-split of the flows at the end of the two columns allowed the NMHCs and halocarbons to be observed simultaneously by electron capture detection (ECD) and flame ionization detection (FID). To avoid peak-overlap from the two columns while merging, programmed pressures were incorporated to control the Deans switch. In addition to the advantage of measuring two important classes of compounds in the atmosphere at the same time, this method has the additional benefit of using the homogeneity of atmospheric CFC-113 as an “intrinsic” internal reference. Thus, better data continuity, less consumption of gas standards, and real-time quality control can all be achieved.  相似文献   

13.
李继文  李薇  王川 《色谱》2009,27(3):346-350
采用微板流路控制技术(Deans Switch)和常见的商品毛细管柱HP-5 (30 m×0.32 mm×0.25 μm)和Rtx-TCEP (30 m×0.25 mm×0.4 μm),建立了一种全新的分析车用汽油中苯和甲苯含量的二维气相色谱方法。用该方法分析汽油中0~5%的苯和0~20%的甲苯,两者校正曲线的线性关系良好,相关系数分别为0.9994和0.9999;标准样品5次重复测定的相对标准偏差均小于1.5%;车用汽油实际样品中苯和甲苯的加标回收率在96.8%~103.8%之间。车用汽油实际样品测定结果和SH/T 0713-2002标准方法测定结果一致。该方法是车用汽油中苯和甲苯含量测定的一种简便快捷、准确可靠的分析方法。  相似文献   

14.
Summary The current status of gas chromatographic procedures and instrumentation for the analysis of volatile environmental contaminants is discussed. Design features of gas chromatographic systems, capable of transferring portions of eluting compounds from one gas chromatographic column into another are also discussed. A prototype two-dimensional gas chromatograph has been built and tested. The system is composed of two separate gas chroamtographs, which are joined by a common heated interface. A combination of off-line valves and restrictors (Deans' switches) serves to change carrier gas flow directions. Compounds selected for cutting are transferred to the second gas chromatograph and held in an intermediate trap. The effluents from the second column are detected by FID/ECD, operated in parallel. Important parameters which effect sample transfer between the systems have been studied to serve as basis for a semiautomated instrument to be built. Some applications with synthetic mixtures are demonstrated.  相似文献   

15.
Introduction of solutions of up to several milliliters by on-column injection of large volumes or by coupled HPLC-GC may cause problems with GC detectors (FID, AFID, MS). For instance, dichloromethane forms large amounts of hydrochloric acid and carbon black in FIDs. A column effluent splitter was developed for keeping the major portion of the solvent vapors away from the detector; approximately 99% of the vapor is vented while the remaining 1% of vapor is used for detecting the widths of the solvent peaks. During analysis, the split ratio is reversed by a strong increase of the resistance to the gas flow through the split exit line. The system was used for the determination of di-(2-ethylhexyl)-phthalate (DEHP) in triglyceride matrices of various foods. Direct determination by HPLC is not sufficiently sensitive, whereas direct analysis by GC is hindered by the triglycerides. Solutions of fats or oils were pre-separated on a silica column using dichloro-methanelcyclohexane 1:l with addition of 0.05 % acetonitrile as eluent. The HPLC fraction containing the DEHP was transferred to GC through a loop-type interface using concurrent solvent evaporation. Detection limits were around 0.1 ppm.  相似文献   

16.
A method of gas chromatography with nitrogen chemiluminescence detection and using standard addition is described for the determination of acrylamide in heat‐processed foods. Using a modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) sample preparation method removes the acrylamide precursors completely, and the risk of overestimating acrylamide concentration due to additional analyte formation in the hot gas chromatograph inlet is also avoided. Sample preparation is rapid and inexpensive. A Deans switch device is utilized to heart‐cut acrylamide and to prevent interferences from the solvent and matrix from reaching the detector. The pre‐column is backflushed at high temperature to maintain a clean baseline and shorten the cycle time compared to baking out the column. Quantitation using standard addition is employed for compensation of potential variability in the acrylamide extraction efficiency in acetonitrile. The limit of detection and the limit of the quantification obtained for this method are 27 and 81 μg/kg, respectively, in food samples (equivalent to 3.5 and 10.6 μg/L in acetonitrile, respectively), and the linear range is 76–9697 μg/kg in food samples (equivalent to 10–1280 μg/L in acetonitrile) with an R2 value of 0.9999.  相似文献   

17.
A new gas chromatograph‐atomic emission detector (GC‐AED) coupled with Deans switching technique for analyzing volatiles from tobaccos were developed. The detector operating parameters (reagent gas pressure and make‐up gas flow rate) were optimized. The detection limits for the elements carbon (193 nm), hydrogen (486 nm) and oxygen (171 nm) ranged 0.05–0.2, 0.05–0.3 and 1–11 ng, respectively, depending on the compound. The sensitivity and linearity for the elements carbon (193 nm), hydrogen (486 nm) and oxygen (171 nm) decreased in the order O>H>C. Calibration curves were obtained by plotting peak area versus concentration, and the correlation coefficients relating to linearity were at least 0.9359. Elemental response factors measured on these channels, relative to the carbon 193‐nm channel, were hydrogen, 0.38–0.48 (mean %RSD=5.64), and oxygen, 0.085–0.128 (mean %RSD=14.9). The evaluation was also done for the new technique and for an established GC‐MS technique for the same real samples. The results of GC‐AED and GC‐MS showed that there was a relatively good agreement between the two sets of data.  相似文献   

18.
The construction and evaluation of an interface for two-dimensional gas chromatography is described. The interface consists of commercially available components and is attachable to available gas chromatographs without any major modifications. The interface has been constructed so as to permit “heartcutting” as well as solute band concentration. Trapping is performed in a simple cold trap of fused silica. Flow switching is accomplished by Deans switching. Factors of the over-all chromatographic performance are examined.  相似文献   

19.
A novel heart‐cutting two‐dimensional liquid chromatography coupled with tandem mass spectrometry method was developed for quantitative analysis of pendimethalin residue in tobacco. The strategy of reversed phase liquid chromatography coupled with another reversed‐phase liquid chromatography was employed for high column efficiency and excellent compatibility of mobile phase. In the first dimensional chromatography, a cyano column with methanol/water as the eluent was applied to separate pendimethalin from thousands of interference components in tobacco. By heart‐cutting technique, which effectively removed interference components, the target compound was cut to the second dimensional C18 column for further separation. The pendimethalin residue was finally determined by the tandem mass spectrometry under multiple reaction monitoring reversed‐phase liquid chromatography mode. Sample pretreatment of the new method was simplified, involving only extraction and filtration. Compared with traditional methodologies, the new method showed fairly high selectivity and sensitivity with almost no matrix interference. The limit of quantitation for pendimethalin was 1.21 ng/mL, whereas the overall recoveries ranged from 95.7 to 103.3%. The new method has been successfully applied to non‐stop measure of 200 real samples, without contamination of ion source. Detection results of the samples agreed well with standard method.  相似文献   

20.
Innovative features and technical improvements in modern bench-top quadrupole gas chromatograph-mass spectrometer (GC-MS) have prepared the way for faster and more cost-effective applications while still maintaining sufficient chromatographic resolution, speed of MS data acquisition and reliability of analytical methodology. In this paper, a short wide-bore capillary column with low film thickness (5 m x 0.32 mm i.d., 0.1 microm) was used a pre-fractionating column and only chosen heart-cuts were transferred to the second chromatographic dimension (15 m x 0.25 mm i.d., 0.25 microm) by means of a pressure-adjusted continual flow type switching device for quantification of five common amphetamine-type stimulant drugs. The instrumental setting used, in combination with carefully optimized operational fast GC and MS parameters, markedly decreased the retention times of the targeted analytes, e.g., amphetamine 0.891 min and methamphetamine 1.037 min, and the total chromatographic runtime (1.700 min), as well as reducing the need for continuous cleaning of the MS ion source and increasing column life compared with conventional GC-MS approaches. The performance of the instrumental configuration and analytical method was evaluated in validation experiments and the method was also applied to authentic samples. The method demonstrates the potential of fast GC-MS in combination with a gas-phase microfluidic Deans switch device for analysing of (semi)volatile compounds, such as amphetamine-type stimulant (ATS) drugs. This should be particularly useful in modern laboratories aiming at cost-efficient analysis as well as the optimum use of available laboratory capacity and instrumentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号